Skip to main content
Log in

Plant mRNA 3′-end formation

  • RNA Processing and Stability
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Our understanding of how the 3′ ends of mRNAs are formed in plants is rudimentary compared to what we know about this process in other eukaryotes. The salient features of plant pre-mRNAs that signal cleavage and polyadenylation remain obscure, and the biochemical mechanism is as yet wholly uncharacterised. Nevertheless, despite the lack of universally conserved cis-acting motifs, a common underlying architecture is emerging from functional analyses of plant poly(A) signals, allowing meaningful comparison with components of poly(A) signals in other eukaryotes. A plant poly(A) signal consists of one or more near-upstream elements (NUE), each directing processing at a poly(A) site a short distance downstream of it, and an extensive far-upstream element (FUE) that enhances processing efficiency at all sites. By analogy with other systems, a model for a plant 3′-end processing complex can be proposed. Plant poly(A) polymerases have been isolated and partially characterised. These, together with hints that some processing factors are conserved in different organisms, opens promising avenues toward initial characterisation of the trans-acting factors involved in 3′-end formation of mRNAs in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA: Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115–122 (1989).

    Google Scholar 

  2. Ashe MP, Griffin P, James W, Proudfoot NJ: Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Devel 9: 3008–3025 (1995).

    Google Scholar 

  3. Ballantyne S, Bilger A, Astrom J, Virtanen A, Wickens M: Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA 1: 64–78 (1995).

    Google Scholar 

  4. Beelman CA, Parker R: Degradation of mRNA in eukaryotes. Cell 81: 179–183 (1995).

    Google Scholar 

  5. Berry M, Sacher RC: Hormonal regulation of poly(A) polymerase activity by gibberellic acid in embryo-less half-seeds of wheat (Triticum aestivum). FEBS Lett 132: 109–113 (1981).

    Google Scholar 

  6. Berry M, Sacher RC: Expression of conserved message of poly(A) polymerase through hormonal control in wheat aleurone layers. FEBS Lett 141: 164–168 (1982).

    Google Scholar 

  7. Berry M, Sacher RC: Regulation of poly(A) polymerase activity and poly(A)+RNA levels by auxin in pea epicotyls. FEBS Lett 154: 139–144 (1983).

    Google Scholar 

  8. Bevan M, Barnes WM, Chilton M: Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl Acids Res 11: 369–385 (1982).

    Google Scholar 

  9. Birnstiel ML, Busslinger M, Strub K: Transcription termination and 3′ processing: the end is in site! Cell 41: 349–359 (1985).

    Google Scholar 

  10. Boelens WC, Jansen EJR, van Venrooij J, Stripecke R, Mattaj IW, Gunderson SI: The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72: 881–892 (1993).

    Google Scholar 

  11. Boutry M, Chua N: A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J 4: 2159–2165 (1985).

    Google Scholar 

  12. Broglie KE, Gaynor JJ, Broglie RM: Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA 83: 6820–6824 (1986).

    Google Scholar 

  13. Burkard G, Keller EB: Poly(A) polymerase and poly(G) polymerase in wheat chloroplasts. Proc Natl Acad Sci USA 71: 389–393 (1974).

    Google Scholar 

  14. Butler JS, Platt T: RNA processing generates the mature 3′ end of yeast CYC1 messenger RNA in vitro. Science 242: 1270–1274 (1988).

    Google Scholar 

  15. Butler JS, Sadhale PP, Platt T: RNA processing in vitro produces mature 3′ ends of a variety of Saccharomyces cerevisiae mRNAs. Mol Cell Biol 10: 2599–2605 (1990).

    Google Scholar 

  16. Chaubet N, Chaboute M, Clément B, Ehling M, Philipps G, Gigot C: The histone H3 and H4 mRNAs are polyadenylated in maize. Nucl Acids Res 16: 1295–1304 (1988).

    Google Scholar 

  17. Chen F, MacDonald CC, Wilusz J: Cleavage site determinants in the mammalian polyadenylation signal. Nucl Acids Res 23: 2614–2620 (1995).

    Google Scholar 

  18. Cherrington J, Russnak R, Ganem D: Upstream sequences and cap proximity in the regulation of polyadenylation in ground squirrel hepatitis virus. J Virol 66: 7589–7596 (1992).

    Google Scholar 

  19. Connelly S, Manley JL: A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Devel 2: 440–452 (1988).

    Google Scholar 

  20. Curtis D, Lehmann R, Zamore PD: Translational regulation in development. Cell 81: 171–178 (1995).

    Google Scholar 

  21. Czarnecka E, Gurley WB, Nagao RT, Mosquera LA, Key JL: DNA sequence and transcript mapping of a soybean gene encoding a small heat shock protein. Proc Natl Acad Sci USA 82: 3726–3730 (1985).

    Google Scholar 

  22. D'Alessandro M, Srivastava BIS: Poly(A) polymerrase and poly(ADP-ribose) polymerase activities in normal and crown gall tumor tissue cultures of tobacco. FEBS Lett 188: 239–242 (1985).

    Google Scholar 

  23. Das Gupta J, Li Q, Thomson AB, Hunt AG: Characterization of a novel plant poly(A) polymerase. Plant Sci 110: 215–226 (1995).

    Google Scholar 

  24. Das OP, Ward K, Ray S, Messing J: Seuence variation between alleles reveals two types of copy correction at the 27-kDa zein locus of maize. Genomics 11: 849–856 (1991).

    Google Scholar 

  25. De Greve H, Dhaese P, Seurinck J, Lemmers M, Van Montagu M, Schell J. J Mol Appl Genet 1: 499–512 (1982).

    Google Scholar 

  26. Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H, Bedbrook J: mRNA transcripts of several plant genes are polyadenylated at multiple sites in vivo. Nucl Acids Res 14: 2229–2240 (1986).

    Google Scholar 

  27. Depicker A, Ingelbrecht I, van Houdt H, De Loose M, Van Montagu M: Posttranscriptional reporter transgene silencing in transgenic tobacco. Proceedings of University of Nottingham Easter School: ‘Mechanisms and Application of Gene Silencing’ 27–31 March 1995, Nottingham, England (1995).

  28. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM: Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1: 561–573 (1982).

    Google Scholar 

  29. DeZazzo JD, Imperiale MJ: Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol Cell Biol 9: 4951–4961 (1989).

    Google Scholar 

  30. DeZazzo JD, Kilpatrick JE, Imperiale MJ: Involvement of long terminal repeat U3 sequences overlapping the transcription control region in human immunodeficiency virus type 1 mRNA 3′ end formation. Mol Cell Biol 11: 1624–1630 (1991).

    Google Scholar 

  31. Dhaese P, De Greve H, Gielen J, Seurinck J, Van Montagu M, Schell J: Identification of sequences involved in the polyadenylation of higher plant nuclear transcripts using Agrobacterium T-DNA genes as models. EMBO J 2: 419–426 (1983).

    Google Scholar 

  32. Edwalds-Gilbert G, Prescott J, Falck-Pedersen E: 3′ RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol Cell Biol 13: 3472–3480 (1993).

    Google Scholar 

  33. Eggermont J, Proudfoot NJ: Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J 12: 2539–2548 (1993).

    Google Scholar 

  34. Elliston K Messing J: The molecular architecture of plant genes: a phylogenetic perspective. In Kahl G (ed) Architecture of Eucaryotic Genes, pp. 21–56. VCH Verlag, Weinheim, Germany (1988).

    Google Scholar 

  35. Enriquez-Harris P, Levitt N, Briggs D, Proudfoot NJ: A pause site for RNA polymerase II is associated with termination of transcription. EMBO J 10: 1833–1842 (1991).

    Google Scholar 

  36. Fitzgerald M, Shenk T: The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24: 251–260 (1981).

    Google Scholar 

  37. Furth PA, Choe W-T, Rex JH, Byrne JC, Baker CC: Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol 14: 5278–5289 (1994).

    Google Scholar 

  38. Fütterer J, Gordon K, Bonneville JM, Sanfaçon H, Pisan B, Penswick J, Hohn T: The leading sequence of caulimovirus large RNA can be folded into a large stem-loop structure. Nucleic Acids Res 16: 8377–8390 (1988).

    Google Scholar 

  39. Fütterer J, Potrykus I, Valles-Brau MP, Dasgupta I, Hull R, Hohn T: Splicing in a plant pararetrovirus. Virology 198: 663–670 (1994).

    Google Scholar 

  40. Gallie DR: The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Devel 5: 2108–2116 (1991).

    Google Scholar 

  41. Gilmartin GM, Fleming ES, Oetjen J, Graveley BR: CPSF recognition of an HIV-1 mRNA 3′-processing enhancer: multiple sequence contacts involved in poly(A) sie definition. Genes Devel 9: 72–83 (1993).

    Google Scholar 

  42. Green PJ: Control of mRNA stability in higher plants. Plant Physiol 102: 1065–1070 (1993).

    Google Scholar 

  43. Guerineau F, Brooks L, Mullineaux P: Effect of deletions in the cauliflower mosaic virus polyadenylation sequence on the choice of the polyadenylation sites in tobacco protoplasts. Mol Gen Genet 226: 141–144 (1991).

    Google Scholar 

  44. Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj IW: The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 76: 531–541 (1994).

    Google Scholar 

  45. Guo Z, Sherman F: 3′-end forming-signals of yeast mRNA. Mol Cell Biol 15: 5983–5990 (1995).

    Google Scholar 

  46. Harris B, Dure L: Polyadenylylation of stored mRNA in cotton seed germination. Prog Nucl Acid Res Mol Biol 19: 113–118 (1976).

    Google Scholar 

  47. Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW, Hull R: An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucl Acids Res 19: 2615–2621 (1991).

    Google Scholar 

  48. Hou W, Russnak R, Platt T: Poly(A) site selection in the yeast Ty retroelement requires an upstream region and sequencespecific titratable factor(s) in vitro. EMBO J 13: 446–452 (1994).

    Google Scholar 

  49. Humphrey T, Birse CE, Proudfoot NJ: RNA 3′ end signals of the S. pombe ura4 gene comprise a site determining and efficiency element. EMBO J 13: 2441–2451 (1994).

    Google Scholar 

  50. Hunt AG: Identification and characterisation of cryptic polyadenylation sites in the 3′ region of a pea ribulose-1,5-bisphosphate carboxylase small subunit gene. DNA 7: 329–336 (1988).

    Google Scholar 

  51. Hunt AG: Messenger RNA 3′ end formation in plants. Annu Rev Plant Physiol Plant Mol Biol 45: 47–60 (1994).

    Google Scholar 

  52. Hunt AG, Chu NM, Odell JT, Nagy F, Chua N: Plant cells do not properly recognize animal gene polyadenylation signals. Plant Mol Biol 8: 23–35 (1987).

    Google Scholar 

  53. Hunt AG, MacDonald MH: Deletion analysis of the polyadenylation site of a pea ribulose-1,5-bisphosphate carboxylase small-subunit gene. Plant Mol Biol 13: 125–138 (1989).

    Google Scholar 

  54. Ingelbrecht I, Breyne P, Vancompernolle K, Jacobs A, Van Montagu M, Depicker A: Transcriptional interference in transgenic plants. Gene 109: 239–242 (1991).

    Google Scholar 

  55. Ingelbrecht ILW, Herman LMF, Dekeyser RA, Van Montagu MC, Depicker AG: Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1: 671–680 (1989).

    Google Scholar 

  56. Iwasaki K, Temin HM: The efficiency of RNA 3′-end formation is determined by the distance between the cap site and the poly(A) site in spleen necrosis virus. Genes Devel 4: 2299–2307 (1990).

    Google Scholar 

  57. Jackson RJ, Standart N: Do the poly(A) tail and 3′ untranslated region control mRNA translation. Cell 62: 15–24 (1990).

    Google Scholar 

  58. Jenny A, Keller W: Cloning of cDNAs encoding the 160 kDa subunit of the bovine cleavage and polyadenylation specificity factor. Nucl Acids Res 23: 2629–2635 (1995).

    Google Scholar 

  59. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res 15: 9627–9640 (1987).

    Google Scholar 

  60. Kapoor R, Verma N, Saluja D, Lakhani S, Sacher RC: Purification and characterization of a poly(A) polymerase from germinated wheat embryos: enzyme glycosylation. Plant Sci 89: 167–176 (1993).

    Google Scholar 

  61. Keith B, Chua N: Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5: 2419–2425 (1986).

    Google Scholar 

  62. Keller W: No end yet to messenger RNA 3′ processing. Cell 81: 829–832 (1995).

    Google Scholar 

  63. Kiss-László Z, Blanc S, Hohn T: Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14: 3552–3562 (1995).

    Google Scholar 

  64. Klahre U, Hemmings-Mieszczak M, Filipowicz W: Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia. Plant Mol Biol 28: 569–574 (1995).

    Google Scholar 

  65. Lakhani S, Kapoor R, Verma N, Sacher RC: Evidence for the de novo synthesis of poly(A) polymerase in germinated wheat embryos. Phytochemistry 28: 1031–1035 (1989).

    Google Scholar 

  66. Lakhani S, Sacher RC: Regulation of poly(A) polymerase activity and poly(A)+ RNA in germinated wheat embryos under conditions of pathogenesis. Biochim Biophys Acta 825: 303–315 (1985).

    Google Scholar 

  67. Lakhani S, Sacher RC: Hormonal regulation of poly(A)+ RNA and poly(A) polymerase activity in wheat embryos. Plant Sci 42: 191–200 (1985).

    Google Scholar 

  68. Lakhani S, Thiru AN, Sacher RC: Synthesis of poly(A) polymerase from conserved messenger RNA in germinating excised embryos of wheat. Phytochemistry 22: 1561–1566 (1983).

    Google Scholar 

  69. Levitt N, Briggs D, Gil A, Proudfoot NJ: Definition of an efficient synthetic poly(A) site. Genes Devel 3: 1019–1025 (1989).

    Google Scholar 

  70. Li Q, Hunt AG: A near-upstream element in a plant polyadenylation signal consists of more than six nucleotides. Plant Mol Biol 28: 927–934 (1995).

    Google Scholar 

  71. Lingner J, Kellermann J, Keller W: Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature 354: 496–498 (1991).

    Google Scholar 

  72. Lingner J, Radtke I, Wahle E, Keller W: Purification and characterization of poly(A) polymerase from Saccharomyces cerevisiae. J Biol Chem 266: 8741–8746 (1991).

    Google Scholar 

  73. Luehrsen KR, Walbot V: Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Devel 8: 1117–1130 (1994).

    Google Scholar 

  74. Lutz CS, Alwine JC: Direct interaction of the U1snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Devel 8: 567–586 (1994).

    Google Scholar 

  75. MacDonald CC, Wilusz J, Shenk T: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14: 6647–6654 (1994).

    Google Scholar 

  76. MacDonald MH, Mogen BD, Hunt AG: Characterization of the polyadenylation signal from the T-DNA-encoded octopine synthase gene. Nucl Acids Res 19: 5575–5581 (1994).

    Google Scholar 

  77. Manley JL: A complex assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Devel 5: 222–228 (1995).

    Google Scholar 

  78. Mans RJ, Huff NJ: Utilization of ribonucleic acid and deoxyoligomer primers for polyadenylic acid synthesis by adenosine triphosphate: polynucleotidylexotransferase from maize. J Biol Chem 250: 3672–3678 (1975).

    Google Scholar 

  79. Mans RJ, Walter TJ: Transfer RNA-primed oligoadenylate synthesis in maize seedlings. II. Primer, substrate and metal specificities and size of product. Biochim Biophys Acta 247: 113–121 (1971).

    Google Scholar 

  80. Mathur M, Saluja D, Sacher RC: De novo synthesis of poly(A) polymerase in mung bean hypocotyls, involving stored mRNA. Phytochemistry 28: 1037–1042 (1989).

    Google Scholar 

  81. Merits A, Zelenina DA, Mizenina OA, Chernov BK, Morozov SY: Poly(A) addition site mapping and polyadenylation signal analysis in a plant circovirus replication-related gene. Virology 211: 345–349 (1995).

    Google Scholar 

  82. Messing J, Geraghty D, Heidecker G, Hu N, Kridl J, Rubenstein I: Plant gene structure. In Kosuge T, Meredith P, Hollaender A (eds) Genetic Engineering of Plants: An agricultural Perspective, pp. 211–227. Plenum Press, New York (1983).

    Google Scholar 

  83. Minvielle-Sebastia L, Preker PJ, Keller W: RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 266: 1702–1705 (1994).

    Google Scholar 

  84. Miralles VJ: Termination of transcription in an in vitro system is dependent on a polyadenylation sequence. Nucl Acids Res 19: 3593–3599 (1991).

    Google Scholar 

  85. Mogen BD, MacDonald MH, Graybosch R, Hunt AG: Upstream sequences other than AAUAAA are required for efficient messenger RNA 3′-end formation in plants. Plant Cell 2: 1261–1272 (1990).

    Google Scholar 

  86. Mogen BD, MacDonald MH, Leggewie G, Hunt AG: Several distinct types of sequence elements are required for efficient mRNA 3′ end formation in a pea rbcS gene. Mol Cell Biol 12: 5406–5414 (1992).

    Google Scholar 

  87. Moreira A, Wollerton M, Monks J, Proudfoot NJ: Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J 14: 3809–3819 (1995).

    Google Scholar 

  88. Murthy KGK, Manley JL: The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Devel 9: 2672–2683 (1995).

    Google Scholar 

  89. Nakayama T, Ohtsubo N, Mikami K, Kawata T, Tabata T, Kanazawa H, Iwabuchi M: Cis-acting sequences that modulate transcription of wheat histone H3 gene and 3′ processing of H3 premature mRNA. Plant Cell Physiol 30: 825–832 (1989).

    Google Scholar 

  90. Nemeth A, Krause S, Blank D, Jenny A, Jenö P, Lustig A, Wahle E: Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucl Acids Res 23: 4034–4041 (1995).

    Google Scholar 

  91. Ohtsubo N, Iwabuchi M: The conserved 3′-flanking sequence, AATGGAAATG, of the wheat histone H3 gene is necessary for the accurate 3′-end formation of mRNA. Nucl Acids Res 22: 1052–1058 (1994).

    Google Scholar 

  92. Peterson ML: Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol 14: 7891–7898 (1994).

    Google Scholar 

  93. Pichersky E, Brock TG, Nguyen D, Hoffman NE, Piechulla B, Tanksley SD, Green BR: A new member of the CAB gene family: structure, expression and chromosomal location of Cab-8, the tomato gene encoding the Type III chlorophyll a/b-binding polypeptide of photosystem I. Plant Mol Biol 12: 257–270 (1989).

    Google Scholar 

  94. Preker PJ, Lingner J, Minvielle-Sebastia L, Keller W: The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 81: 379–389 (1995).

    Google Scholar 

  95. Prescott JC, Falck-Pedersen E: Sequence elements upstream of the 3′ cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol 14: 4682–4693 (1994).

    Google Scholar 

  96. Proudfoot N: How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem Sci 14: 105–110 (1989).

    Google Scholar 

  97. Raabe T, Murthy KGK, Manley JL: Poly(A) polymerase contains multiple functional domains. Mol Cell Biol 14: 2946–2957 (1994).

    Google Scholar 

  98. Richter JD: Translational control in development: a perspective. Devel Genet 14: 407–411 (1993).

    Google Scholar 

  99. Rothnie HM, Chapdelaine Y, Hohn T: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 44: 1–67 (1994).

    Google Scholar 

  100. Rothnie HM, Reid J, Hohn T: The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3′-end formation in plants. EMBO J 13: 2200–2210 (1994).

    Google Scholar 

  101. Russnak R, Ganem D: Sequences 5′ to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Devel 4: 764–776 (1990).

    Google Scholar 

  102. Russnak RH: Regulation of polyadenylation in hepatitis B viruses: stimulation by the upstream activating signal PS1 is orientation-dependent, distance-independent, and additive. Nucleic Acids Res 19: 6449–6456 (1991).

    Google Scholar 

  103. Sacher RC: Biosynthesis of ribonucleic acid and polyadenylic acid in tobacco leaf homogenates. Biochim Biophys Acta 169: 58–66 (1968).

    Google Scholar 

  104. Sachs A, Wahle E: Poly(A) tail metabolism and function in eukaryotes. J Biol Chem 268: 22955–22958 (1993).

    Google Scholar 

  105. Sachs AB: Messenger RNA degradation in eukaryotes. Cell 74: 413–421 (1993).

    Google Scholar 

  106. Saluja D, Mathur M, Sacher RC: Purification of poly(A) polymerase from mung bean hypocotyls: subunit structure, molecular properties and characterization of the reaction product. Plant Sci 60: 27–38 (1989).

    Google Scholar 

  107. Sanfaçon H: Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal. Virology 198: 39–49 (1994).

    Google Scholar 

  108. Sanfaçon H, Brodmann P, Hohn T: A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Devel 5: 141–149 (1991).

    Google Scholar 

  109. Sanfaçon H, Hohn T: Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal. nature 346: 81–84 (1990).

    Google Scholar 

  110. Sanfaçon H, Wieczorek A: Analysis of cauliflower mosaic virus RNAs in Brassica species showing a range of susceptibility to infection. Virology 190: 30–39 (1992).

    Google Scholar 

  111. Sasaki K, Tazawa T: Polyriboadenylate synthesizing activity in chromatin of wheat seedlings. Biochem Biophys Res Commun 52: 1441–1449 (1973).

    Google Scholar 

  112. Schek N, Cooke C, Alwine JC: Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol 12: 5386–5393 (1992).

    Google Scholar 

  113. Sheets MD, Ogg SC, Wickens MP: Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucl Acids Res 18: 5799–5805 (1990).

    Google Scholar 

  114. Simpson GG, Clark GP, Rothnie HM, Boelens W, van Venrooij W, Brown JWS: Molecular characterisation of the spliceosomal proteins U1A and U2B″ from higher plants. EMBO J 14: 4540–4550 (1995).

    Google Scholar 

  115. Sittler A, Gallinaro H, Jacob M: Upstream and downstream cis-acting elements for cleavage at the L4 polyadenylation site of adenovirus-2. Nucl Acids Res 22: 222–231 (1994).

    Google Scholar 

  116. Sullivan TD, Christensen AH, Quail PH: Isolation and characterization of a maize chlorophyll a/b binding protein gene that produces high levels of mRNA in the dark. Mol Gen Genet 215: 431–440 (1989).

    Google Scholar 

  117. Tabata T, Fukasawa M, Iwabuchi M: Nucleotide sequence and genomic organisation of a wheat histone H3 gene. Mol Gen Genet 196: 397–400 (1984).

    Google Scholar 

  118. Tabata T, Terayama C, Mikami K, Uchiyama H, Iwabuchi M: An accurate transcription of wheat histone genes in sunflower cells. Plant Cell Physiol 28: 73–82 (1987).

    Google Scholar 

  119. Takagaki Y, Manley JL: A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372: 471–474 (1994).

    Google Scholar 

  120. Tarui Y, Minamikawa T: Purification and properties of poly(A) polymerase from Vigna unguiculata. Plant Cell Physiol 29: 835–842 (1988).

    Google Scholar 

  121. Tarui Y, Minamikawa T: Poly(A) polymerase from Vigna unguiculata seedlings. Eur J Biochem 186: 591–596 (1989).

    Google Scholar 

  122. Valsamakis A, Zeichner S, Carswell S, Alwine JC: The human immunodeficiency virus type 1 polyadenylylation signal: a 3′ long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylylation. Proc Natl Acad Sci USA 88: 2108–2112 (1991).

    Google Scholar 

  123. Wahle E: Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 270: 2800–2808 (1995).

    Google Scholar 

  124. Wahle E: 3′-end cleavage and polyadenylation of mRNA precursors. Biochim Biophys Acta 1261: 183–194 (1995).

    Google Scholar 

  125. Wahle E, Keller W: The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61: 419–440 (1992).

    Google Scholar 

  126. Wahle E, Lustig A, Jenö P, Maurer P: Mammalian poly(A)-binding protein II. J Biol Chem 268: 2937–2945 (1993).

    Google Scholar 

  127. Wasserman KM, Steitz JA: Association with terminal exons in pre-mRNAs: a new role for the U1 snRNP? Genes Devel 7: 647–659 (1993).

    Google Scholar 

  128. Weichsan der Glon C, Monks J, Proudfoot NJ: Occlusion of the HIV poly(A) site. Genes Devel 5: 244–253 (1991).

    Google Scholar 

  129. Wickens M: Forward, backward, how much, when: mechanisms of poly(A) addition and removal and their role in early development. Semin Devel Biol 3: 399–412 (1992).

    Google Scholar 

  130. Wormington M: Poly(A) and translation: development control. Curr Opin Cell Biol 5: 950–954 (1993).

    Google Scholar 

  131. Wu L, Ueda T, Messing J: Sequence and spatial requirements for the tissue- and species-independent 3′-end processing mechanism of plant mRNA. Mol Cell Biol 14: 6829–6838 (1994).

    Google Scholar 

  132. Wu L, Ueda T, Messing J: The formation of mRNA 3′-ends in plants. Plant J 8: 323–329 (1995).

    Google Scholar 

  133. Wu L, Ueda U, Messing J: 3′-end processing of the maize 27 kDa zein mRNA. Plant J 4: 535–544 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothnie, H.M. Plant mRNA 3′-end formation. Plant Mol Biol 32, 43–61 (1996). https://doi.org/10.1007/BF00039376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039376

Key words

Navigation