Skip to main content
Log in

Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Intergeneric hybridizations were performed between Triticum aestivum L. (2n=6x=42, AABBDD) and twelve Elymus species, ten tetraploids (2n=4x=28, SSYY) and two hexaploids (2n=6x=42, SSHHYY and SSYY??), namely, E. pendulinus (Nevski) Tzvelev, E. altissimus (Keng), Löve, E. anthosachnoides (Keng) Löve, E. brevipes (Keng) Löve, E. dolichatherus (Keng) Löve, E. parviglumis (Keng) Löve, E. pseudonutans (Keng) Löve, E. tibeticus (Melderis) G. Singh, E. semicostatus (Nees ex Steud.) Melderis, E. caucasicus (C. Koch) Tzvelev (tetraploids), and E. tsukushiensis Honda and E. tschimganicus (Drobov) Tzvelev (hexaploids). The hybrid seed sets in different combinations varied from 4.8%–72.2%, and embryo yields ranged from 3.2%–36.7%. Nine combinations produced adult hybrid plants, eight pentaploids and one hexaploid, through embryo rescue. The production of hybrid plants varied from 1.2%–30%. Chromosome pairing was analysed at metaphase I in the parental species and the hybrids. Average meiotic configurations of 33.51 I+0.74 II+0.03 III+0.001 IV were observed amongst the pentaploid hybrids although there was a large variation, and 31.42 I+5.21 II+0.04 III was recorded in the hexaploid hybrid. It is concluded from the study that: 1) very little pairing occurred between the ABD genomes in T. aestivum and the different genomes in the tetraploid Elymus species. even though the pairing behaviour varied in different combinations; 2) the hexaploid combination had distinctly higher chromosome pairing than the other pentaploid combinations, which could be due either to a low degree of homoeology between the T. aestivum and E. tschimganicus genomes or that the latter species contains, certain gene(s) which increase the meiotic pairing between genomes from the same parental species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A. & A., Comeau, 1991. Production, morphology, and cytogenetics of Triticum aestivum (L.) Thell. x Elymus scabrus (R. Br.) Löve intergeneric hybrids obtained by in ovulo embryo culture. Theor. Appl. Genet. 81: 833–839.

    Google Scholar 

  • Alonso, L.C. & G., Kimber, 1981. The analysis of meiosis in hybrids. II. Triploids. Can. J. Genet. Cytol. 23: 221–234.

    Google Scholar 

  • Armstrong, J.M., 1936. Hybridization of Triticum and Agropyron. I. Crossing results and description of the first generation hybrids. Can. J. Res. Sect. C, 14: 190–202.

    Google Scholar 

  • Armstrong, K.C., C., Nakamura & W.A., Keller, 1983. Karyotype instability in tissue culture regenerants of Triticale (x Triticosecale Wittmack) cv. Welsh from 6-month old callus cultures. Z. Pflanzenzüchtg 91: 233–245.

    Google Scholar 

  • Bothmer, R.von, J., Flink, N., Jacobsen, M., Kotimäki & T., Landström, 1983. Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99: 219–224.

    Google Scholar 

  • Browder, L.E., 1980. A compendium of information about named genes for low reaction to Puccinia recondita. Crop Sci. 20: 775–779.

    Google Scholar 

  • Caldwell, R.M., J.F. Schafer, L.E. Compton & F.L. Patterson, 1956. Resistance to leaf rust derived from Agropyron elongatum. Rept. 3rd Intl. Wheat Rust Conf., p. 95–96.

  • Cauderon, Y., 1966. Genome analysis in the genus Agropyron. In: J. Mac Key (Ed.) Proc. 2nd Inter. Wheat Genet. Symp. Hereditas (Suppl.) 2: 218–234.

  • Claesson, L., M., Kotimäki & R.von, Bothmer, 1990. Production and cytogenetic analysis of the hybrid, Elymus caninus x Triticum aestivum and the backcross to T. aestivum. Cereal Res. Comm. 18: 315–319.

    Google Scholar 

  • Dewey, D.R., 1968. Synthetic Agropyron-Elymus hybrids. III. Elymus canadensis x Agropyron caninum, A. trachycalum, and A. striatum. Amer. J. Bot. 55: 1133–1139.

    Google Scholar 

  • Dewey, D.R., 1971. Synthetic hybrids of Hordeum bogdanii with Elymus canadensis and Sitanion hystrix. Amer. J. Bot. 58: 902–908.

    Google Scholar 

  • Dewey, D.R., 1974. Cytogenetics of Elymus sibiricus and its hybrids with Agropyron tauri, Elymus canadensis, and Agropyron caninum. Bot. Gaz. 135: 80–87.

    Google Scholar 

  • Dewey, D.R., 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: J.P. Gustafson (Ed.) Gene Manipulation in Plant Improvement. Proc. 16th Stadler Genetics Symp., Columbia, 1984, pp. 209–279.

  • Driscoll, C.J., 1975. First compendium of wheat-alien chromsome lines. Wheat Newletter 21: 16–32.

    Google Scholar 

  • Driscoll, C.J., 1981. New approaches to wheat breeding. In: L.T. Evans & W.J. Peacock (Eds) Wheat Science-Today and Tomorrow. p. 97–106, Cambridge University Press.

  • Dvorak, J., 1977a. Effect of rye on homoeologous chromosome pairing in wheat x rye hybrids. Can. J. Genet. Cytol. 19: 549–556.

    Google Scholar 

  • Dvorak, J., 1977b. Transfer of rust resistance from Aegilops longissima to Triticum aestivum. Can. J. Genet. Cytol. 19: 133–141.

    Google Scholar 

  • Elzam, O.E. & E., Epstein, 1969. Salt relations of two grass species differing in salt tolerance. 1. Growth and salt content at different salt concentrations. Agrochimica 13: 189–195.

    Google Scholar 

  • Feldman, M. & E.R. Sears, 1981. The wild gene resources of wheat. Sci. Amer. 102–112.

  • Feldman, M. & I. Strauss, 1983. A genome restructuring gene in Aegilops longissima. Proc. 6th Inter. Wheat Symp., Kyoto, Japan, (S. Sakamoto, Ed.), pp. 309–314.

  • Friebe, B., J.H., Hatchett, R.G., Sears & B.S., Gill, 1990. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 79: 385–389.

    Google Scholar 

  • Gill, B.S. & K.L.D., Morris, 1988. Assignment of the genomic affinities of chromosomes from polyploid Elymus species added to wheat. Genome 30: 70–82.

    Google Scholar 

  • Hsiao, C., R.R.-C., Wang & D.R., Dewey, 1986. Karyotype analysis and genome relationship of 22 diploid species in the tribe Triticeae. Can. J. Genet. Cytol. 28: 109–120.

    Google Scholar 

  • Jensen, K.B., 1990a. Cytology, fertility, and morphology of Elymus kengii (Keng) Tzvelev and E. grandiglumis (Keng) A. Löve (Triticeae: Poaceae). Genome 33: 563–570.

    Google Scholar 

  • Jensen, K.B., 1990b. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus and E. batalinii (Triticeae: Poaceae). Genome 33: 668–673.

    Google Scholar 

  • Jensen, K.B. & S.L., Hatch, 1989. genome analysis, morphology, and taxonomy of Elymus gmelinii and E. strictus (Poaceae: Triticeae). Bot. Gaz. 150: 84–92.

    Google Scholar 

  • Johnson, L.P.V., 1938. Hybridization of Triticum and Agropyron. 4. Further crossing results and studies of the F1 hybrids. Can. J. Res. Sect. C, 16: 417–444.

    Google Scholar 

  • Kimber, G., 1984. Technique selection for the introduction of alien variation in wheat. Z. Pflanzenzüchtg. 92: 15–21.

    Google Scholar 

  • Kimber, G. & L.C., Alonso, 1981. The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can. J. Genet. Cytol. 23: 235–254.

    Google Scholar 

  • Knott, D.R., 1961. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Pl. Sci. 41: 109–123.

    Google Scholar 

  • Knott, D.R., 1971. The transfer of gene for disease resistance from alien species to wheat by induced translocations. In: Mutation Breeding for Disease Resistance, International Atomic Energy Agency, Vienna: 67–77.

    Google Scholar 

  • Knott, D.R. & J., Dvorak, 1976. Alien germplasm as a source of resistance to disease. Annu. Rev. Phytopathol. 14: 211–235.

    Google Scholar 

  • Kuo, P.C. (Ed.), 1987. Flora Reip. Popu. Sinicae (In Chinese). Science Press, Beijing, pp. 59–104.

    Google Scholar 

  • Lapitan, N.L.V., R.G., Sears & B.S., Gill, 1984. Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 68: 547–554.

    Google Scholar 

  • Lawrence, J.M., K.M., Day, E., Huey & B., Lee, 1958. Lysine content of wheat varieties, species and related genera. Cereal Chem. 35: 169–178.

    Google Scholar 

  • Lu, B.R., 1992. Dihaploids of Elymus from the interspecific crosses E. dolichatherus x E. tibeticus and E. brevipes x E. panormitanus. Theor. Appl. Genet. 82: (in press).

  • Lu, B.R. & R.von, Bothmer, 1989. Cytological studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis x Triticum aestivum, Hereditas 111: 231–238.

    Google Scholar 

  • Lu, B.R. & R.von, Bothmer, 1990a. Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas 112: 109–116.

    Google Scholar 

  • Lu, B.R. & R.von, Bothmer, 1990b. Genomic constitution of Elymus parviglumis and E. pseudonutans: Triticeae (Poaceae). Hereditas 113: 109–119.

    Google Scholar 

  • Lu, B.R. & R.von, Bothmer, 1991. Cytogenetic studies of the intergeneric hybrids between Secale cereale and Elymus caninus, E. brevipes, and E. tsukushiensis (Triticeae: Poaceae). Theor. Appl. Genet. 81: 524–532.

    Google Scholar 

  • Lu, B.R., B., Salomon & R.von, Bothmer, 1990a. Cytogenetic studies of the progenies from intergeneric crosses Elymus x Hordeum and Elymus x Secale. Genome 33: 425–432.

    Google Scholar 

  • Lu, B.R., J., Yan & J.L., Yang, 1990b. Cytological observations of Triticeae materials from Xinjiang, Qinghai and Sichuan (in Chinese). Act Bot. Yunnanica 12: 57–66.

    Google Scholar 

  • Lu, B.R., J., Yan, J.L., Yang & J., Flink, 1990c. Biosystematic studies among Roegneria pendulina Nevski, R. ciliaris (Trin.) Nevski and R. kamoji Ohwi in the tribe Triticeae, Gramineae. Acta Bot. Yunnanica 12: 161–171.

    Google Scholar 

  • Löve, A., 1984. Conspectus of the Triticeae. Feddes Report. 95: 425–521.

    Google Scholar 

  • Martin, T.J., 1981. New cultivars. Fall cereal Conf., Kansas Agr. Expt. Stn., Manhattan, p. 7–8.

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • McFadden, E.S., 1934. Crosses of wheat with related genera. Res. 4th Hard Spring Wheat Conf., Minneapolis, MN, pp. 45.

  • McGuire, P.E. & J., Dvorak, 1981. High salt tolerance potential in wheat grasses. Crop, Sci. 21: 102–705.

    Google Scholar 

  • Miller, T.E. & V., Chapman, 1976. Aneuhaploids in bread wheat. Genet. Res. Camb. 28: 37–45.

    Google Scholar 

  • Morris, K.L.D., W.J., Raupp & B.S., Gill, 1990. Isolation of Ht genome chromosome additions from polyploid Elymus trachycaulus (StStHtHt) into common wheat (Triticum aestivum). Genome 33: 16–22.

    Google Scholar 

  • Mujeeb-Kazi, A.K. & M., Bernard, 1982. Somatic chromosome variations in backcross-1 progenies from intergeneric hybrids involving some Triticeae. Cereal Res. Comm. 10: 41–4.

    Google Scholar 

  • Mujeeb-Kazi, A.K. & M., Bernard, 1985. Cytogenetics of intergeneric Elymus canadensis x Triticum aestivum hybrid (n=5x=35, SHABD) and their backcross progenies with T. aestivum. Z. Pflanzenzüchtg. 95: 50–62.

    Google Scholar 

  • Muramatsu, M., 1942. Interspecific hybrids in Agropyron. 2. Japan. J. Genet. 18: 133–135.

    Google Scholar 

  • Muramatsu, M., S. Kaneta, R. Ikeda, T. Uetsuki & K. Takahashi, 1983. Hybridization of Japanese indigenous Agropyron (Roegneria) species with hexaploid wheat and cytogenetics of some of the F1, BF1 and amphiploid plants. In: S. Sakamoto (Ed.) Proc. 6th Intern. Wheat Genet. Symp. Kyoto, Japan, pp. 1041–1048.

  • Peto, F.H., 1930. Cytological studies in the genus Agropyron. Can. J. Res. 3: 428–448.

    Google Scholar 

  • Riley, R. & V., Chapman, 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 203: 156–158.

    Google Scholar 

  • Runemark, H. & W.K., Heneen, 1968. Elymus and Agropyron, a problem of generic delimitation. Bot. Notiser 121: 51–79.

    Google Scholar 

  • Sakamoto, S., 1964. Cytogenetic problems in Agropyron hybrids. Seiken Ziho 16: 38–47.

    Google Scholar 

  • Sears, E.R., 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–22.

    Google Scholar 

  • Sears, E.R., 1972a. Agropyron-wheat transfer through induced homoeologous pairing. Can. J. Genet. Cytol. 14: 736 (Abstract).

    Google Scholar 

  • Sears, E.R., 1972b. Chromosome engineering in wheat. Stadler Symp. 4: 23–38.

    Google Scholar 

  • Sears, E.R., 1973. Agropyron-wheat transfer induced by homoeologous pairing. In: E.R. Sears & L.M.S. Sears (Eds) Proc. 4th Inter. Wheat Genet. Symp. USA, pp. 191–199.

  • Sears, E.R., 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19: 585–593.

    Google Scholar 

  • Sears, E.R., 1983. The transfer to wheat of interstitial segment of alien chromosomes. Proc. 6th Inter. Wheat Genet. Symp., Japan, (S. Sakamoto ed.), pp. 5–12.

  • Sears, E.R. & M. Okamoto, 1958. Intergenomic chromosome relationships in hexaploid wheat. In: Proc. 10th Congr. Genet., pp. 258–259.

  • Sharma, H.C. & P.S., Baenziger, 1986. Production, morphology, and cytogenetic analysis of Elymus caninus (Agropyron caninum) x Triticum aestivum F1 hybrids and backcross-1 derivatives. Theor. Appl. Genet. 71: 750–756.

    Google Scholar 

  • Sharma, H.C. & B.S., Gill, 1981. New hybrids between Agropyron and wheat. I. A. ciliaris x wheat and A. smithii x wheat. Wheat Information Service 52: 19–22.

    Google Scholar 

  • Sharma, H.C. & B.S., Gill, 1983a. New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor. Appl. Genet. 66: 111–121.

    Google Scholar 

  • Sharma, H.C. & B.S., Gill, 1983b. Current status of wild hybridization in wheat. Euphytica 32: 17–31.

    Google Scholar 

  • Sharma, H.C., B.S., Gill & J.K., Uyemoto, 1984. High level of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol. Z. 110: 143–147.

    Google Scholar 

  • Sharma, H.C., H.Y., Ohm, R.M., Lister, J.E., Forster & R.H., Shukle, 1989. Response of wheatgrasses and wheat x wheat-grasses hybrids to barley yellow dwarf virus. Theor. Appl. Genet. 77: 369–374.

    Google Scholar 

  • Shimshi, D., M.L., Mayoral & D., Atsmon, 1982. Response to water stress in wheat and related wild species. Crop Sci. 22: 123–128.

    Google Scholar 

  • Smith, D.C., 1943. Intergeneric hybridization of Triticum and other grasses, principally Agropyron. J. Hered. 34: 219–224.

    Google Scholar 

  • Smith, E.L., E.E., Sebesta, H.C., Young, H., Pass & D.C., Abbott, 1981. Registration of Payne wheat. Crop Sci. 21: 636.

    Google Scholar 

  • Snow, R., 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosome squash preparation. Stain Technol. 38: 9–13.

    Google Scholar 

  • Torabinejad, J., J.G., Carman & C.F., Crane, 1987. Morphology and genome analyses of interspecific hybrids of Elymus scabrus. Genome 29: 150–155.

    Google Scholar 

  • Tzvelev, N.N., 1976. Tribe 3. Triticeae Dumort. In: Poaceae USSR, Navka Publishing House, Leningrad, pp. 147–181.

    Google Scholar 

  • Veruschkine, S.M., 1936. On the hybridization of Triticum and Agropyron. J. Bot. USSR, 21: 176–185.

    Google Scholar 

  • Wienhues, A., 1965. Cytogenetische Untersuchungen über die chromosomale Grundlage der Rostresistenz der Weizensorte Weique. Züchter 35: 352–354.

    Google Scholar 

  • Whelan, E.D.P., 1988. Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome 30: 293–298.

    Google Scholar 

  • Whelan, E.D.P. & G.E., Hart, 1988. A spontaneous translocation that transfer wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30: 289–292.

    Google Scholar 

  • Yen, Y. & D., Liu, 1987. Production, morphology, and cytogenetics of intergeneric hybrids of Elymus L. species with Triticum aestivum L. and their backcross derivatives. Genome 29: 689–694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, BR., von Bothmer, R. Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica 58, 81–95 (1991). https://doi.org/10.1007/BF00035343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035343

Key words

Navigation