Skip to main content
Log in

An application of viscoelastic fracture criteria to steady crack propagation in a polymeric material under fixed deformation

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Tensile stress relaxation and stable crack growth under fixed tensile deformation over an extended range of crack speeds were measured on a flexible thermosetting epoxy resin. The experimental results are analysed and compared with the predictions of two theoretical models of fracture kinetics in viscoelastic media, based on different approaches: one theory, developed by Schapery, postulates a criterion of material failure local to the crack tip; the second theory, evolved by Christensen, extends the overall statement of the conservation of energy to systems that dissipate energy due to viscoelastic effects. The observed behaviour is in qualitative agreement with the theoretical predictions. Quantitative discrepancies, however, call for further theoretical refinements.

Résumé

On a mesuré sur une résine epoxy flexible la relaxation de la tension et la croissance stable d'une fissure four une dilatation imposée, et sur une gamme étendue de vitesses de propagation de la fissure.

Lés résultats expérimentaux sont analysés et comparés aux prédictions de deux modèles théoriques de la cinétique de la rupture dans les milieux viscoelastiques, en se basant sur deux approches. L'une, théorique, développée par Schapery, suppose l'application à l'extrémité de la fissure d'un critère de ruine locale du matériau. L'autre, théorique également, déduit par Christensen, élargit le principle général de conservation de l'energie aux systèmes qui dissipent une énergie à cause des effets viscoélastiques.

Le comportement observé est en accord qualitatif avec les prédictions théoriques.

Des divergences quantitatives, toutefois, appellent quelques affinements théoriques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Wnuk and W.G. Knauss, International Journal of Solids and Structures 6 (1970) 995–1009.

    Google Scholar 

  2. H.K. Müller and W.G. Knauss, Journal of Applied Mechanics (ASME) 38 (1971) 483–488.

    Google Scholar 

  3. J.G. Williams, International Journal of Fracture Mechanics 8 (1972) 393–401.

    Google Scholar 

  4. R.A. Schapery, International Journal of Fracture 11 (1975) 141–159.

    Google Scholar 

  5. R.A. Schapery, International Journal of Fracture 11 (1975) 369–388.

    Google Scholar 

  6. R.A. Schapery, International Journal of Fracture 11 (1975) 549–562.

    Google Scholar 

  7. L.N. McCartney, International Journal of Fracture 13 (1977) 641–654.

    Google Scholar 

  8. E.H. Andrews and Y. Fukahori, Journal of Materials Science 12 (1977) 1307–1319.

    Google Scholar 

  9. G.S. Brockway and R.A. Schapery, Engineering Fracture Mechanics 10 (1978) 453–468.

    Google Scholar 

  10. R.A. Schapery, International Journal of Fracture 14 (1978) 293–309.

    Google Scholar 

  11. L.N. McCartney, International Journal of Fracture 14 (1978) 547–554.

    Google Scholar 

  12. L.N. McCartney, International Journal of Fracture 15 (1979) 31–40.

    Google Scholar 

  13. R.M. Christensen, International Journal of Fracture 15 (1979) 3–21.

    Google Scholar 

  14. L.N. McCartney, International Journal of Fracture 16 (1980) 375–382.

    Google Scholar 

  15. R.M. Christensen and E.M. Wu, Engineering Fracture Mechanics 14 (1981) 215–225.

    Google Scholar 

  16. C.H. Popelar and G.H. Staab, in Proceedings of the 8th Plastic Fuel Gas Pipe Symposium, Arlington (VA), (1983) 62–68.

  17. L.V. Nikitin, International Journal of Fracture 24 (1984) 149–157.

    Google Scholar 

  18. R.A. Schapery, International Journal of Fracture 25 (1984) 195–223.

    Google Scholar 

  19. K. Sehanobish, E. Baer, A. Chudnovsky and A. Moët, Journal of Materials Science 20 (1985) 1934–1944.

    Google Scholar 

  20. M.L. Williams, International Journal of Fracture Mechanics 1 (1965) 292–310.

    Google Scholar 

  21. R.M. Christensen, Transactions of the Society of Rheology 21 (1977) 163–181.

    Google Scholar 

  22. B.V. Kostrov and L.V. Nikitin, Archiwum Mechaniki Stosowanej 22 (1970) 749–776 (in English).

    Google Scholar 

  23. J.D. Ferry, Viscoelastic Properties of Polymers, J. Wiley, New York, 3rd ed. (1980).

    Google Scholar 

  24. W.F. Knoff and I.L. Hopkins, Journal of Applied Polymer Science 16 (1972) 2963–2972, quoted in [23] 68.

    Google Scholar 

  25. D.P. Rooke and D.J. Cartwright, Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London (1976) 90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassine, R., Pavan, A. An application of viscoelastic fracture criteria to steady crack propagation in a polymeric material under fixed deformation. Int J Fract 43, 303–317 (1990). https://doi.org/10.1007/BF00035089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035089

Keywords

Navigation