Skip to main content
Log in

The dynamics of slow peeling

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The forces controlling the slow growth of a crack through a system with time dependent elasticity are discussed. The geometry studied was that of thin film peeling, where a layer of polymer was detached from a rigid substrate under a constant load. Four forces resisting crack growth were necessary to explain the crack behaviour, two arising from surface effects and two from bulk relaxations. Experiments on the peeling of rubber from poly (methylmethacrylate) have supported the theory.

Résumé

On discusse des forces qui contrôlent la croissance lente d'une fissure dans un système dont les caractéristiques d'élasticité dépendent du temps. La géométrie étudiée est celle d'un film mince en cours de pelage, à savoir une couche de polymère se détachant d'un substrat solide sous un effort constant. Pour expliquer le comportement de la fissure, il a fallu recourir à quatre forces s'opposant à la croissance de la fissure, deux émanant d'effets de surface, et deux associées à des relaxations d'ensemble. Des essais de pelage d'un caoutchouc silastomère déposé sur du polyméthylméthacrylate ont confirmé la théorie proposée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith, Phil. Trans. Roy. Soc., 221 (1920) 163.

    ADS  Google Scholar 

  2. N. F. Mott, Engineering, 16 (1948) 2.

    Google Scholar 

  3. A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials, Wiley, New York, (1967) p. 50.

    Google Scholar 

  4. E. Orowan, Rep. Prog. Phys., 12 (1948) 185.

    Article  ADS  Google Scholar 

  5. G. R. Irwin, Fracturing of Metals, A.S.M., Cleveland, Ohio (1948) p. 147.

    Google Scholar 

  6. J. W. Obreimoff, Proc. Soc. (Lond.), A27 (1930) 290.

    ADS  Google Scholar 

  7. E. Orowan, Zeit. Phys., 82 (1933) 239.

    ADS  Google Scholar 

  8. A. I. Bailey and J. S. Courtney-Pratt, Proc. Roy. Soc. (Lond.), A227 (1955) 500.

    Article  ADS  Google Scholar 

  9. J. P. Berry, Nature, 185 (1960) 91.

    Article  ADS  Google Scholar 

  10. J. J. Gilman, J. Appl. Phys., 31 (1960) 2208.

    Article  ADS  Google Scholar 

  11. J. D. Burton, W. D. Jones and M. L. Williams, Trans. Soc. Rheol., 15 1 (1971) 39.

    Article  Google Scholar 

  12. K. L. Johnson, K. Kendall and A. D. Roberts, Proc. Roy. Soc. (Lond.), A324 (1971) 301.

    ADS  Google Scholar 

  13. B. V. Deryagin and N. A. Krotova, Chem. Abs., 43 (1949) 2842.

    Google Scholar 

  14. K. Kendall, J. Phys. D.: Appl. Phys., 4 (1971) 1186.

    Article  ADS  Google Scholar 

  15. P. B. Lindley, J.I.R.I., 5 (1971) 243.

    MathSciNet  Google Scholar 

  16. N. A. Krotova, Y. M. Kirillova and B. V. Deryagin, Zhur. Fiz. Chim., 30 (1956) 1921.

    Google Scholar 

  17. K. Kendall, J. Adhesion, 5 (1973) 179.

    Google Scholar 

  18. J. I. Bluhm, Fracture, ed. H. Liebowitz, Academic Press, N.Y. (1969) p.2.

    Google Scholar 

  19. K. Kendall, in press.

  20. K. Kendall, J. Adhesion, 5 (1973) 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendall, K. The dynamics of slow peeling. Int J Fract 11, 3–12 (1975). https://doi.org/10.1007/BF00034708

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034708

Keywords

Navigation