Skip to main content
Log in

Differential anaerobic decomposition of seagrass (Zostera noltii) and macroalgal (Monostroma obscurum) biomass from Arcachon Bay (France)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Arcachon Bay is characterized by extensive meadows of the seagrass Zostera noltii. Moreover, as a consequence of eutrophication, massive proliferations of the macroalga (Monostroma obscurum) have occurred since the beginning of 1990s.

This paper describes the anaerobic decomposition of biomass of both species under experimental conditions by two methods. Firstly, the dynamics of decomposition were studied in situ using litter bags. The remaining biomass and the elemental composition of the decomposing macrophytes were monitored. Secondly, degradation was studied in experimental containers under anoxic conditions in which the release of inorganic nutrients and the development of fermentative and sulfate-reducing bacterial populations were followed.

The decomposition rate of total biomass was faster for macroalgae than for the vascular plants, thus corroborating previous observations. However, both in situ and laboratory experiments showed that the anaerobic decomposition of the seagrass Z. noltii resulted in rapid release of inorganic N and P, and increasing C/N and C/P ratios of the residual biomass. As a result, the recycling of inorganic nitrogen and phosphorus compounds was slightly more efficient for Z. noltii than for M. obscurum. Recycling of inorganic nutrients appears to be of a great importance to the whole ecosystem, because of the extensive spreading of Z. noltii in the bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, S. E., 1970. Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford: 185–186.

    Google Scholar 

  • APHA, AWWA, WPCF, 1980. Standard methods for the examination of water and wastewater. 15th edn. 1134 pp.

  • Auby, I., 1991. Contribution à l'étude des herbiers de Zostera noltii dans le Bassin d'Arcachon. Thèse Doctorat, Université Bordeaux I, 234 pp.

  • Auby, I. & P. J. Labourg, 1996. Seasonal dynamics of Zostera noltii Hornem. in the Bay of Arcachon (France). J. Sea Res. (in press).

  • Auby, I., F. Manaud, D. Maurer & G. Trut, 1994. Etude de la prolifération des algues vertes dans le Bassin d'Arcachon. Rapport SIBA: 163 pp.

  • Brouard, F., 1983. Digestion aérobie de la biomasse végétale aquatique. Thèse de Docteur Ingénieur, INSA Toulouse, 175 pp.

    Google Scholar 

  • Caumette, P., 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon. FEMS Microbiol. Ecol. 38: 113–124.

    Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454–458.

    Google Scholar 

  • Duarte, C. M., 1992. Nutrient concentration of aquatic plants: patterns across species. Limnol. Oceanogr. 37: 882–889.

    Google Scholar 

  • Durieu de Maisonneuve, M., 1855. Notes détachées sur quelques plantes de la flore de la Gironde, et description d'une nouvelle espèce d'Avena. Actes Soc. linn. Bordeaux. 20: 1–83.

    Google Scholar 

  • Enriquez, S., C. M. Duarte & K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus CXP content. Oecologia 94: 457–471.

    Google Scholar 

  • Faucille, S., 1984. Digestion anaérobie de végétaux aquatiques. Végétaux marins et d'eau douce. Thèse Institut national Polytechnique de Lorraine, 100 pp.

  • Fenchel, T., 1977. Aspects of the decomposition of seagrasses. In C. P. McRoy & C. Helfferich (eds), Seagrasses ecosystems: a scientific perspective. Marcel Dekker, New York: 123–145.

    Google Scholar 

  • Godschalk, G. L. & R. G. Wetzel, 1978. Decomposition of aquatic angiosperms. c. Zostera marina L. and a conceptual model of decomposition. Aquat. Bot. 5: 329–354.

    Google Scholar 

  • Hanisak, M. D., 1993. Nitrogen release from decomposing seaweeds: species and temperature effects. J. appl. Phycol. 5: 175–181.

    Google Scholar 

  • Harrisson, P. G. & K. H. Mann, 1975. Detritus formation from eelgrass (Zostera marina L.): the relative effects of fragmentation, leaching and decay. Limnol. Oceanogr. 20: 924–934.

    Google Scholar 

  • Hemminga, M. A. & J. Nieuwenhuize, 1991. Transport, deposition and in situ decay of seagrasses in a tropical mudflat area (Banc d'Arguin, Mauritania). Neth. J. Sea Res. 27: 183–190.

    Google Scholar 

  • Horner, J. D., J. R. Gosz & R. G. Cates, 1988. The role of carbon-based secondary metabolites in decomposition. Am. Nat. 132: 869–883.

    Google Scholar 

  • Iizumi, H., A. Hattori & C. P. McRoy, 1982. Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds. Mar. Biol. 66: 59–65.

    Google Scholar 

  • Jørgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–832.

    Google Scholar 

  • Lavery, P. S. & A. J. McComb, 1991. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary. Estuar. coast. shelf Sci. 32: 281–295.

    Google Scholar 

  • Le Corre, P., 1983. Dosage du carbone organique particulaire. In CNEXO (ed.), Manuel des analyses chimiques en milieu marin. BNDO/Documentation, Brest (France): 203–208.

    Google Scholar 

  • Pellikaan, G. C., 1982. Decomposition processes of eelgrass, Zostera marina L. Hydrobiol. Bull. 16: 83–92.

    Google Scholar 

  • Pellikaan, G. C., 1984. Laboratory experiments on eelgrass (Zostera marina L.) decomposition. Neth. J. Sea Res. 18: 360–383.

    Google Scholar 

  • Pfennig, N., F. Widdel & H. G. Trüper, 1981. The dissimilatory sulfate-reducing bacteria. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel (eds), The prokaryotes, a handbook on habitats, isolation and identification of bacteria. Springer-Verlag, Berlin, vol. 1: 926–940.

    Google Scholar 

  • Ribes, E., 1988. Contribution à l'étude de la prolifération des algues vertes dans le Bassin d'Arcachon. Contrat I.F.R.E. MER 875527053. 31 pp.

  • Rice, D. L. & K. R. Tenure, 1981.Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. coast. shelf Sci. 13: 681–690.

    Google Scholar 

  • Rysgaard, S., N. Rysgaard-Petersen & N. P. Sloth, 1996. Nitrification, denitrification and nitrate ammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia 000 (Dev. Hydrobiol. 000): 000–000.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman & Company, San Fransisco, 859 pp.

    Google Scholar 

  • Stal, L. J., S. B. Behrens, M. Villbrandt, S. van Bergeijk & F. Kruyning, 1996. The biogeochemistry of two eutrophic marine lagoons and its effect on microphytobenthic communities. Hydrobiologia (this volume).

  • Swain, T., 1979. Tannins and lignins. In G. E. Rosenthal & D. H. Janzen (eds), Herbivores: their interactions with secondary plant metabolites. Academic Press, New York: 657–682.

    Google Scholar 

  • Thayer, G. W., D. W. Engel & M. W. Lacroix, 1977. Seasonal distribution and changes in the nutritive quality of living, dead and detrital fractions of Zostera marina L. J. exp. mar. Biol. Ecol. 30: 109–127.

    Google Scholar 

  • Tréguer, P. & P. Le Corre, 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer (utilisation de l'autoanalyseur II Technicon R). 2e ed. Laboratoire d'Océanologie Chimique, Université de Bretagne occidentale. 110 pp.

  • Viaroli, P., M. Bartoli, C. Bondavalli, R. R. Christian, G. Giordani & M. Naldi, 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329 (Dev. Hydrobiol. 117): 105–119.

    Google Scholar 

  • Viaroli, P., A. Pugnetti & I. Ferrari, 1992. Ulva rigida growth and decomposition processes and related effects on nitrogen and phosphorus cycles in a coastal lagoon (Sacca di Goro, Po River Delta). In G. Colombo, I. Ferrari, V. U. Ceccherelli & R. Rossi (eds), Marine eutrophication and population dynamics. Olsen & Olsen, Fredensborg (Denmark): 77–84.

    Google Scholar 

  • Williams, S. L., 1984. Decomposition of the macroalga Caulerpa cupressoides (West) C. Agardh: field and laboratory studies. J. exp. mar. Biol. Ecol. 80: 109–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourguès, S., Auby, I., de Wit, R. et al. Differential anaerobic decomposition of seagrass (Zostera noltii) and macroalgal (Monostroma obscurum) biomass from Arcachon Bay (France). Hydrobiologia 329, 121–131 (1996). https://doi.org/10.1007/BF00034552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034552

Key words

Navigation