Skip to main content
Log in

Relationships of bryophytes and lichens to environmental gradients in Maine peatlands

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The most important environmental gradients of Maine peatlands are geologic substrate and alkalinity. Other gradients are coastal-inland climate, moisture content of the peat, P and K concentrations, and shade. Abundance weighted means of pH, Ca, and moisture content of peat are given for the 48 most frequently occurring bryophyte and lichen species. A TWINSPAN differentiated twenty associations. Environments of the first four TWINSPAN dichotomies differed largely by pH and related variables, though Fe, %H2O, shade, microtopography, and degree of humification were also significant. A CCA with forward selection entered pH, P, Fe, Na, %H2O, shade, and a climate factor as the minimum number of variables which best account for the species variation. Bryophyte and lichen distributions are determined primarily by edaphic and hydrologic factors, which determine the kinds and amounts of mineral solutes in peat interstitial water. Two independent chemical gradients were identified: (1) the acidity-alkalinity gradient related to base cation concentrations, and (2) a gradient of Fe, Al, Mn, and Si related to shallowness of peat and inputs from granitic lithologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. E., Crum, H. A. & Buck, W. R. 1990. List of the mosses of North America north of Mexico. The Bryologist 93: 448–499.

    Google Scholar 

  • Braun-Blanquet, J. 1932. Plant sociology: the study of plant communities. McGraw-Hill, New York.

    Google Scholar 

  • Briggs, R. D. & Lemin, R. C.Jr. 1992. Delineation of climatic regions in Maine. Canadian Journal of Forestry Research 22: 801–811.

    Google Scholar 

  • Crum, H. 1984. Sphagnopsida, Sphagnaceae. North American Flora, Ser. II, Part 11. New York Botanical Garden, New York.

    Google Scholar 

  • Damman, A. W. H. 1977. Geographic changes in the vegetation pattern of raised bogs in the Bay of Fundy region of Maine and New Brunswick. Vegetatio 35: 137–151.

    Google Scholar 

  • Davis, R. B. 1989. Classification and distribution of freshwater peatlands in Maine (draft). Maine Planning Office, Critical Areas Program. Augusta.

    Google Scholar 

  • Davis, R. B. & Anderson, D. S. 1991. The eccentric bogs of Maine: a rare wetland type in the United States. Maine Agricultural Experiment Station, Orono. Technical Bulletin 146. 168 pp.

  • Gignac, L. D. & Vitt, D. H. 1990. Habitat limitations of Sphagnum along climatic, chemical, and physical gradients in mires of western Canada. Bryologist 93: 7–22.

    Google Scholar 

  • Gignac, L. D., Vitt, D. H., Zoltai, S. C. & Bayley, S. E. 1991. Bryophyte response surfaces along climatic, chemical, and physical gradients in peatlands of western Canada. Nova Hedwigia 53: 27–71.

    Google Scholar 

  • Glaser, P. H., Janssens, J. A. & Siegel, D. I. 1990. The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. Journal of Ecology 78: 1021–1048.

    Google Scholar 

  • Gorham, E. & Janssens, J. A. 1992a. The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. Suo 43: 117–126.

    Google Scholar 

  • Gorham, E. & Janssens, J. A. 1992b. Concepts of fen and bog re-examined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61: 7–20.

    Google Scholar 

  • Hale, M. E. 1979. How to know the lichens. 2nd ed. Wm. C. Brown Co. Dubuque, Iowa. 246 pp.

    Google Scholar 

  • Hill, M. O. 1979. TWINSPAN—a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell Univ., New York.

    Google Scholar 

  • Horton, D. G., Vitt, D. H. & Slack, N. G. 1979. Habitats of circumboreal-subarctic Sphagna: I. A quantitative analysis and review of species in the Caribou Mountains, northern Alberta. Canadian Journal of Botany 57: 2283–2317.

    Google Scholar 

  • Janssens, J. A. 1987. Ecology of peatland bryophytes and paleoenvironmental reconstruction of peatlands using fossil bryophytes. Manual for Bryological Methods Workshop, Mainz, FRG, 17–23 July 1987. 67 pp.

  • Janssens, J. A. 1992. Bryophytes. In: Wright, H. E.Jr., Coffin, B. & Aaseng, N. E. (eds), The patterned peatlands of Minnesota. University of Minnesota Press, Minneapolis, pp. 43–57.

    Google Scholar 

  • Janssens, J. A. & Glaser, P. H. 1986. The bryophyte flora and major peat-forming mosses at Red Lake peatland, Minnesota. Canadian Journal of Botany 64: 427–442.

    Google Scholar 

  • Janssens, J. A., Hansen, B. C. S., Glaser, P. H. & Witlock, C. 1992. Development of a raised bog complex in northern Minnesota. In: Wright, H. E.Jr., Coffin, B. & Aaseng, N. E. (eds), The patterned peatlands of Minnesota. University of Minnesota Press, Minneapolis, pp. 189–221.

    Google Scholar 

  • McMahon, J. S. 1990. The biophysical regions of Maine: patterns in the landscape and vegetation. M. Sc. thesis, Univ. of Maine, Orono. 120 pp.

  • Schuster, R. M. 1966–1992. The Hepaticae and Anthoceratae of North America, east of the hundredth meridian. Vol. I to VI. Columbia University Press, New York.

    Google Scholar 

  • Sjörs, H. 1948. Myrvegetation i Bergslagen. Acta Phytogeogr. Suec. 21: 1–299.

    Google Scholar 

  • Sjörs, H. 1950. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258.

    Google Scholar 

  • ter, Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter, Braak, C. J. F. 1988. CANOCO — a FORTRAN program for CANOnical Community Ordination by [partial]-[detrended][canonical] correspondence analysis, principal components analysis and redundancy analysis. TNO Institute of Applied Computer Science, Wageningen. 95 pp.

    Google Scholar 

  • ter, Braak, C. J. F. 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter, Braak, C. J. F. & Juggins, S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Google Scholar 

  • Vitt, D. H. & Chee, W. L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87–106.

    Google Scholar 

  • Vitt, D. H. & Slack, N. G. 1984. Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Canadian Journal of Botany 62: 1409–1430.

    Google Scholar 

  • von, Post, L. 1924. Das genetische System der organogenen Bildungen Schwedens. Commité Internat de Pédologie, Comm. 22: 287–304.

    Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. 717 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.S., Davis, R.B. & Janssens, J.A. Relationships of bryophytes and lichens to environmental gradients in Maine peatlands. Vegetatio 120, 147–159 (1995). https://doi.org/10.1007/BF00034344

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034344

Key words

Navigation