Skip to main content
Log in

Modeling of impact-induced spall fracture and post spall behavior of a circular plate

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The ductile spall fracture and post-spall behavior of a circular target plate after impact with a flyer plate having small diameter, is modeled by means of a viscoplastic constitutive theory that includes the microvoid volume fraction as a scalar material damage variable. Incorporation of the damage parameter permits description of rate-dependent, hardening, compressible inelastic deformation and ductile fracture, where local fracture is defined in terms of a critical microvoid volume fraction.

Multidimensional axisymmetric strains are developed where, because of the edge effect of the smaller flyer plate, nonplanar as well as planar waves are generated. Numerical simulations demonstrate the destructive effect of increasing the velocity of impact. They also illustrate the influence of varying the viscosity parameter associated with the microvoid growth on the development of damage. The change in location of the spall fracture caused by reduction of the flyer plate thickness is shown, as is the fragmented behaviour of the target up to 50 μs after initiation of the spall fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Perzyna, International Journal of Solids and Structures, 22, No. 7 (1986) 797–818.

    Google Scholar 

  2. J.A. Nemes, J. Eftis and P.W. Randles, ASME Journal of Applied Mechanics 57, No. 2 (1990) 282–291.

    Google Scholar 

  3. J. Eftis, J.A. Nemes and P.W. Randles, International Journal of Plasticity 7, (1991) 15–39. See also Advances in Plasticity-1989, A.S. Kahn and M. Tokuda (eds.), Pergamon Press, Oxford (1989) 381–384.

    Article  Google Scholar 

  4. J.A. Nemes and J. Eftis, in Shock Waves in Condensed Matter-1989, S.C. Schmidt, J.N. Johnson and L.W. Davidson (eds.), Elsevier Science, Amsterdam (1990) 369–372.

    Google Scholar 

  5. J.A. Nemes and J. Eftis, in Advances in Constitutive Laws for Engineering Materials, vol II, International Academic Publishers, Beijing (1989) 633–639.

    Google Scholar 

  6. J.A. Nemes and J. Eftis, International Journal of Plasticity, forthcoming.

  7. J. Eftis and J.A. Nemes International Journal of Plasticity 7, (1991) 275–293.

    Article  Google Scholar 

  8. D.R. Curran, L. Seaman and D.A. Shockey, Physics Reports 147, No. 5/6 (1987) 253–388.

    Article  Google Scholar 

  9. M.A. Meyers and C.T. Aimone, Progress in Material Science 28, No. 1 (1983) 1–96.

    Article  Google Scholar 

  10. L.M. Taylor and D.P. Flanagan, “PRONTO” 2D A Two-Dimensional Transient Solid Dynamics Program,” SAND86-0594, Sandia National Laboratories, Albuquerque, New Mexico (1987).

    Google Scholar 

  11. J.H. Mackenzie, Proceedings of the Physical Society 63 B, No. 2 (1950) 2–11.

    Article  Google Scholar 

  12. S. Shima and M. Oyane, International Journal of Mechanical Sciences 18 (1976) 285–291.

    Article  Google Scholar 

  13. J.W. Hancock, in Yield, Flow and Fracture of Polycrystals, T.N. Baker (ed.), Applied Science, Essex, U.K. (1983).

    Google Scholar 

  14. S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan and J.F. Thomas, International Journal of Mechanical Sciences 26, No. 9/10 (1984) 527–535.

    Article  Google Scholar 

  15. L. Seaman, D.R. Curran and D.A. Shockey, Journal of Applied Physics 47, No. 11 (1976) 4811–4826.

    Article  Google Scholar 

  16. M.M. Carroll and A.C. Holt, Journal of Applied Physics 43, No. 4 (1972) 1626–1636.

    Article  Google Scholar 

  17. J.N. Johnson, Journal of Applied Physics 53, No. 4 (1981) 2812–2825.

    Article  Google Scholar 

  18. A.R. Dowling, J. Harding and J.D. Campell, Journal of the Institute of Metals 98 (1970) 215–224.

    Google Scholar 

  19. J.A. Nemes, “A Viscoplastic Description of High Strain-Rate Deformation, Material Damage and Spall Fracture,” D.Sc. dissertation, George Washington University, 1989.

  20. C. Truesdell and W. Noll, Handbuch der Physik, vol. III/3, Springer-Verlag, Berlin (1965).

    Google Scholar 

  21. D.P. Flanagan, in L.M. Taylor, Computer Methods in Applied Mechanics and Engineering 62 (1987) 305–320.

  22. G.C. Johnson and D.J.H. Bammann, International Journal of Solids and Structures 20, No. 8 (1984) 725–737.

    Google Scholar 

  23. D.P. Flanagan and T. Belytschko, International Journal of Numerical Methods in Engineering 17 (1981) 679–706.

    Google Scholar 

  24. T.J.R. Hughes and J. Winget, International Journal of Numerical Methods in Engineering 15 (1989) 1862–1867.

    Google Scholar 

  25. PDA Engineering, Costa Mesa, CA., PATRAN Release 2–2 (1987).

  26. J.H. Smith, in Dynamic Behavior of Materials, ASTM, Philadelphia, PA (1963) 264–282.

    Google Scholar 

  27. J. Gilath and S. Eliezer, in Advances in Plasticity-1989, A.S. Kahn and M. Tokuda (eds.), Pergamon Press, Oxford (1989) 393–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftis, J., Nemes, J.A. Modeling of impact-induced spall fracture and post spall behavior of a circular plate. Int J Fract 53, 301–324 (1992). https://doi.org/10.1007/BF00034179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034179

Keywords

Navigation