Skip to main content
Log in

Forest floor mass, litterfall and nutrient return in Central Himalayan high altitude forests

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Dynamics of forest floor biomass, pattern of litter fall and nutrient return in three central Himalayan high elevation forests are described. Fresh and partially decomposed litter layer occur throughout the year. In maple and birch the highest leaf litter value was found in October and in low-rhododendron in August. The relative contribution of partially and more decomposed litter to the total forest floor remains greatest the year round. The total calculated input of litter was 627.7 g m-2 yr-1 for maple, 477.87 g m-2 yr-1 for birch and 345.9 g m-2 yr-1 for low-rhododendron forests. 49–61% of the forest floor was replaced per year with a subsequent turnover time of 1.6–2.0 yr. The annual nutrient return through litter fall amounted to (kg ha-1 yr-1) 25.5–56.1 N, 2.0–5.4 P and 9.9–23.3 K. The tree litter showed an annual replacement of 26–54% for different nutrients and it decreased towards higher elevation. The nutrient use efficiency in terms of litter produced per unit of nutrient was higher in present study compared to certain mid- and high-elevation forests of the central Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernhard-Reversat, F. 1972. Decomposition de la litiere de feuilles en foret ombrophile de basse cote—d'ivoire. Oecologia Plantarum 7: 279–300.

    Google Scholar 

  • Bongers, F. Engelen, D. & Klinge, H. 1985. Phytomass structure of natural plant communities on spodosols in southern Venezuela: the Bana Woodland. Vegetatio 63: 13–14.

    Google Scholar 

  • Bray, J. R. & Gorhmam, E. 1964. Litter production in the forests of the world. Adv. Ecol. Res. 2: 101–157.

    Google Scholar 

  • Carlisle, A., Brown, A. H. F. & White, E. J. 1966. Litterfall, leaf production and effects of defoliation by Tortrix viridiana in a sessile oak (Quercus petraea) Woodland. J. Ecol. 54: 65–85.

    Google Scholar 

  • Cole, D. W. & Rapp, M. 1981. Element cycling in forest ecosystems. pp. 341–409. In: D. E.Reiche (ed.), Dynamic properties of forest ecosystems. Cambridge University Press, London.

    Google Scholar 

  • Daalen, J. C. V. 1984. Distinguishing features of forest species on nutrient poor soils in the southern Cape. Bothalia 15: 229–239.

    Google Scholar 

  • Duvignead, P. & Denaeyer-De Smet, S. 1970. Biological cycling of minerals in temperate deciduous forests. In: Analysis of temperate ecosystems. (D. E.Reiche ed.) Springer-Verlag, New York, pp. 195–225.

    Google Scholar 

  • Duvigneaud, P., Denaeyer-De Smet, S., Ambros, P. & Tinperman, J. 1969. A percupre' lininaire sur les biomasses, la productivite et le cycle des elementes biogenes. Bull. Bot. Belg. 102: 317–323.

    Google Scholar 

  • Edwards, P. J. 1977. Studies on mineral cycling in a montane rain forest in New Guinea. II. The production and disappearance of litter. Journal of Ecology 65: 971–992.

    Google Scholar 

  • Edwards, P. J. 1982. Studies on mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in through fall and litter fall. Journal of Ecology 70: 807–827.

    Google Scholar 

  • Edwards, P. J. & Grub, P. J. 1982. Studies on mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. Journal of Ecology 70: 649–666.

    Google Scholar 

  • Garkoti, S. C. 1992. High altitude forests of Central Himalaya: Productivity and nutrient cycling. Ph.D. Thesis, Kumaun University, Naini Tal.

    Google Scholar 

  • Garkoti, S. C. Singh, S. P. 1995. Variation in net primary productivity and biomass of forests in the high mountains of Central Himalaya; J. Veg. Sci. 3: 15–20.

    Google Scholar 

  • Gosz, J. R., Likens, G. E. & Bormann, F. H. 1972. Nutrient content of litter fall on Hubbard Brook Experimental Forest, New Hampshire. Ecology 53: 769–784.

    Google Scholar 

  • Gray, J. T. & Schlesinger, W. H. 1981. Nutrient cycling in mediterranean type ecosystems. pp. 259–285. In: P. C.Miller (ed.), Resource use by Chapparal and Matorral. Springer-Verlag, New York.

    Google Scholar 

  • Jackson, M. L. 1958. Soil Chemical Analysis. Prentice Hall, Inc., New Jersey, U.S.A., 498 p.

    Google Scholar 

  • Kitazawa, Y. 1973. Structure and function of the subalpine coniferous forest ecosystem of M. T. Shiga, Central Japan. In: Kern, L. (ed.), Modelling forest ecosystems. Report of International Biological Programme/P.T. Section, Oak Ridge National Laboratory, U.S.A., 114–122.

    Google Scholar 

  • Klinge, H. & Herrera, S. 1983. Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caastinga forest. Vegetatio 53: 6–84.

    Google Scholar 

  • Klinge, H. & Rodrigues, W. A. 1968. Litter production in a area of Amazonian terra frime forest. Parts I & II. Amazoniana 1: 287–302, 303–310.

    Google Scholar 

  • Lugo, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecol. Monogr. 62: 1–41.

    Google Scholar 

  • Madge, D. S. 1965. Leaf fall and litter disappearance in tropical forests. Pedobiologia 5: 273–288.

    Google Scholar 

  • Meentemeyer, V., Box, E. O. & Thompson, R. 1982. World patterns and amounts of terrestrial plant litter production. Bioscience 32: 125–128.

    Google Scholar 

  • Müller, M. J. 1982. Selected climatic data for a global set of standard stations for vegetation science. W. Junk, The Hague, The Netherlands.

    Google Scholar 

  • Nihlgard, B. 1972. Plant biomass, primary production and distribution of chemical elements in a beech and a planted spurce forest in southern Sweden. Oikos. 23: 69–81.

    Google Scholar 

  • Olson, J. S. 1963. Energy storage and balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Google Scholar 

  • Ovington, J. D. 1965. Organic production, turnover and mineral cycling. Biol. Rev. 40: 295–336.

    Google Scholar 

  • Pandey, U. & Singh, J. S. 1981a. A quantitative study of forest floor, litterfall and nutrient return in an oak-conifer forest in Himalaya. I. Composition and dynamics of forest floor. Oecol. Gener. 2(1): 49–61.

    Google Scholar 

  • Pandey, U. & Singh, J. S. 1981b. A quantitative study of forest floor, litterfall and nutrient return in an oak-conifer forest in Himalaya. II. Pattern of litter fall and nutrient. Oecol. Gener. 2(2): 83–99.

    Google Scholar 

  • Proctor, J. 1983. Tropical forest litter fall. I. Problems of data comparison. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds.), Tropical rain forest: Ecology and management. 267–273. Blackwell, Oxford.

    Google Scholar 

  • Rawat, Y. S. & Singh, J. S. 1989. Forest floor biomass, litterfall and nutrient return in Central Himalayan Oak forests. Vegetatio 82: 113–125.

    Google Scholar 

  • Reiners, W. A. & Reiners, N. M. 1970. Energy and nutrients dynamics of forest floors in three Minnesota forests. J. Ecol. 58: 497–519.

    Google Scholar 

  • Rochow, J. J. 1974. Litter fall relations in a Missouri forest. Oikos 25: 80–85.

    Google Scholar 

  • Sakai, A. & Malla, S. B. 1981. Winter hardiness of tree species at high altitudes in the East Himalaya, Nepal. Ecology 62: 1288–1298.

    Google Scholar 

  • Scott, D. R. M. 1955. Amount of chemical composition of the organic matter contributed by over stroey vegetation to forest soil. Yale Sch, For. 62.

  • Singh, J. S. & Gupta, S. R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev. 43: 449–528.

    Google Scholar 

  • Singh, J. S. & Singh, S. P. 1992. Forests of Himalaya. Structure, Functioning and Impact of Man. Gyanodaya Prakashan, Nainital, India.

    Google Scholar 

  • Singh, S. P., Adhikari, B. S. & Zobel, D. B. 1994. Biomass, productivity, leaf longevity and forest structure in the central Himalaya. Ecol. Monogr. 64: 401–421.

    Google Scholar 

  • Singh, S. P., Pande, K., Upadhayay, V. P. & Singh, J. S. 1990. Fungal communities associated with the decomposition of a common leaf litter (Quercus leucotrichophora A. Camus) along an elevational transect in the central Himalaya. Biol. Fertil. Soils 9: 245–251.

    Google Scholar 

  • Sundriyal, R. C. & Joshi, A. P. 1992. Annual nutrient budget for an alpine grassland in the Garhwal Himalaya. J. Veg. Sci. 3: 21–26.

    Google Scholar 

  • Thamdrup, H. M. 1973. The Danish IBP Woodland Project. In: Modelling forest ecosystems (ed. L.Kern). Report of IBP, P. T. Section, Oak Ridge National Laboratory, U.S. A. 231–235.

    Google Scholar 

  • VanCleve, K. & Noonan, L. L. 1975. Litterfall and nutrient cycling in forest floor of birch and aspen stands in interior Alaska black spruce ecosystems. Can. J. For. Res. 11: 258–273.

    Google Scholar 

  • Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Amer. Nat. 119: 553–572.

    Google Scholar 

  • Vitousek, P. M. 1984. Litter fall nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285–298.

    Google Scholar 

  • Vitousek, P., Gosz, J. R., Grier, C. C., Melillo, J. M. & Reiners, W. A. 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr. 52: 155–177.

    Google Scholar 

  • Witkamp, M. & VanderDrift, J. 1971. Breakdown of forest litter in relation to environmental factors. Plant Soil 15: 295–311.

    Google Scholar 

  • Zavitkovski, J. & Newton, M. 1971. Litterfall and litter accumulation in red alder stands in western Oregon. Plant Soil 35: 257–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garkoti, S.C., Singh, S.P. Forest floor mass, litterfall and nutrient return in Central Himalayan high altitude forests. Vegetatio 120, 33–48 (1995). https://doi.org/10.1007/BF00033456

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033456

Key words

Navigation