Skip to main content
Log in

Understorey vegetation change in a Picea mariana chronosequence

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.

Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCA:

Detrended Corrospondence Analysis

References

  • Baldwin, L. 1958. Plants of the Clay Belt of northern Ontario and Quebec. Nat. Mus. Canada Bull. 156.

  • Black, R. A. & Bliss, L.C. 1978. Recovery sequence of Picea mariana — Vaccinium uliginosum forests after burning near Inuvik, Northwest Territories, Canada. Can. J. Bot. 56: 2020–2030.

    Google Scholar 

  • Boissoneau, A. N. 1966. Glacial history of northern Ontario. I. The Cochrane-Hearst area. Can. J. Earth Sci. 3: 537–578.

    Google Scholar 

  • Carleton, T. J. 1979. Floristic variation and zonation of boreal forests south of James Bay: A cluster-seeking approach. Vegetatio 39: 147–160.

    Google Scholar 

  • Carleton, T. J. & Maycock, P. F. 1978. Dynamics of the boreal forest south of James Bay. Can. J. Bot. 56: 1157–1173.

    Google Scholar 

  • Carleton, T. J. & Maycock, P. F. 1980. Vegetation of the boreal forest south of James Bay: non-centred component analysis of the vascular flora. Ecology 61: 1199–1212.

    Google Scholar 

  • Carleton, T. J. & Maycock, P. F. 1981. Understorey-canopy affinities in boreal forest vegetation. Can. J. Bot. 59: 1709–1716.

    Google Scholar 

  • Carleton, T. J. & Wannamaker, B. A. 1987. Mortality and self-thinning in natural postfire black spruce. Ann. Bot. (in press).

  • Chapman, L. J. & Thomas, M. K. 1968. The climate of northern Ontario. Climatological Studies No. 6, Met. Br., Ont. Dept. Transport, Toronto, Canada.

    Google Scholar 

  • Christensen, N. L. & Peet, R. 1984. Convergence during secondary forest succession. J. Ecol. 72: 25–36.

    Google Scholar 

  • Clements, F. E. 1916. Plant succession. An analysis of the development of vegetation. Carnegie Inst., Washington, No. 242.

    Google Scholar 

  • Crocker, R. L. & Major, J. 1955. Soil development in realtion to vegetation and surface age at Glacier Bay, Alaska. J. Ecol., 31: 434–455.

    Google Scholar 

  • Foster, D. R. 1985. Vegetation development following fire in Picea mariana (black spruce)-Pleurozium forests of southeastern Labrador, Canada. J. Ecol. 73: 517–534.

    Google Scholar 

  • Hill, M. O. 1979a. DECORANA. A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University.

  • Hill, M. O. 1979b. TWINSPAN, A FORTRAN program for two-way indicator species analysis. Section of Ecology and Systematics, Cornell University.

  • Hill, M. O. & Gauch, H.G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Jeglum, J. 1968. Lowland vegetation at Candle Lake, southern boreal forest, Saskatchewan, Ph.D. Dissertation, University of Saskatchewan.

  • Jones, R. K., Wickware, G., Pierpoint, G., Arnup, R. W., Jeglum, J. K. & Bowles, J.W. 1983. Field guide to forest ecosystem classification for the Clay Belt, site region 3E. Ontario Ministry of Natural Resources, Toronto, Ontario.

    Google Scholar 

  • Larsen, J. A. 1980. The boreal ecosystem. Academic Press, New York.

    Google Scholar 

  • Margalef, R. 1963. On certain unifying principles in ecology. Amer. Natur. 97: 357–374.

    Google Scholar 

  • Moss, E. H. 1953. Forest communities in northwestern Alberta. Can. J. Bot. 31: 212–282.

    Google Scholar 

  • Oechel, W. C. & Van Cleve, K. 1986. Role of bryophytes in nutrient cycling in the taiga. In: Van Cleve, K., Chapin III, F. S. Eanagan, P. W. Viereck, L. A. & Dyrness, C. T. (eds) Forest Ecosystems in the Alaskan taiga: A synthesis of structure and function. Springer-Verlag, New York.

    Google Scholar 

  • Ritchie, J. C. 1956. The vegetation of northern Manitoba. I. Studies in the southern spruce forest zone. Can. J. Bot. 34: 528–561.

    Google Scholar 

  • Rowe, J. S. 1956. Vegetation of the southern boreal forest in Saskatchewan and Manitoba. Ph.D. Dissertation, University of Manitoba.

  • Rowe, J. S. & Scotter, G. W. 1973. Fire in the boreal forest. Quat. Res. 3: 444–464.

    Google Scholar 

  • Shafi, M. I. & Yarranton, G. A. 1973a. Diversity, floristic richness, and species evenness during a secondary (postfire) succession. Ecology 54: 897–902.

    Google Scholar 

  • Shafi, M. I. & Yarranton, G. A. 1973b. Vegetational heterogenei ty during a secondary (postfire) succession. Can. J. Bot. 51: 73–90.

    Google Scholar 

  • Swan, J. M. A. & Dix, R. L. 1966. The phytosociological structure of upland forest at Candle Lake, Saskatchewan. J. Ecol. 54: 13–40.

    Google Scholar 

  • Taylor, S. J. 1984. Affinity of understorey vegetation to canopy and soil parameters in upland black spruce. M.Sc. thesis, University of Toronto.

  • Van Cleve, K. & Viereck, L. A. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: West, D. C. & Botkin, D. B. (eds), Forest succession: concepts and applications. pp. 185–211. Springer-Verlag, New York.

    Google Scholar 

  • Van Groenewoud, H. 1965. Analysis and classification of white spruce communities in relation to certain habitat features. Can. J. Bot. 43: 1025–1036.

    Google Scholar 

  • Viereck, L. A. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada. In: Wein, R. W. & MacLean, D. A. (eds), The role of fire in northern circumpolar ecosystems. pp. 201–220. Wiley, New York.

    Google Scholar 

  • Wannamaker, B. A. 1983. An investigation into self-thinning and growth of natural black spruce stands in the Clay Belt of northern Ontario. M.Sc.F. thesis, University of Toronto.

  • Yarie, J. 1983. Environmental and successional relationships of the forest communities of the Porcupine River drainage, interior Alaska. Can. J. For. Res. 13: 721–728.

    Google Scholar 

  • Yarranton, M. & Yarranton, G. A. 1975. Mortality in a jack pine stand in northeastern Ontario, Canada. Can. J. Bot. 53: 310–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, S.J., Carleton, T.J. & Adams, R. Understorey vegetation change in a Picea mariana chronosequence. Vegetatio 73, 63–72 (1988). https://doi.org/10.1007/BF00031853

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031853

Keywords

Navigation