Skip to main content
Log in

On sampling procedures in population and community ecology

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

In this paper we emphasize that sampling decisions in population and community ecology are context dependent. Thus, the selection of an appropriate sampling procedure should follow directly from considerations of the objectives of an investigation. We recognize eight sampling alternatives, which arise as a result of three basic dichotomies: parameter estimation versus pattern detection, univariate versus multivariate, and a discrete versus continuous sampling universe. These eight alternative sampling procedures are discussed as they relate to decisions regarding the required empirical sample size, the selection or arrangement of sampling units, and plot size and shape. Our results indicate that the decision-making process in sampling must be viewed as a flexible exercise, dictated not by generalized recommendations but by specific objectives: there is no panacea in ecological sampling. We also point to a number of unresolved sampling problems in ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BarkmanJ. J. 1979. The investigation of vegetation texture and structure. In: WergerM. J. A. (ed.), The study of vegetation. pp. 125–160. Junk, The Hague.

    Google Scholar 

  • BarthaS. & Horváth, 1987. Application of long transects and information theoretical functions to pattern detection. I. Transects versus isodiametric sampling units. Abstr. Bot. 11: 9–26.

    Google Scholar 

  • BigwoodD. W. & InouyeD. W. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69: 497–507.

    Google Scholar 

  • BormannG. E. 1953. The statistical efficiency of sample plot size and shape in forest ecology. Ecology 34: 474–487.

    Google Scholar 

  • BourdeauP. F. 1953. A test of random versus systematic ecological sampling. Ecology 34: 499–512.

    Google Scholar 

  • BouxinG. 1983. Multi-scaled pattern analysis: an example with savanna vegetation and a proposal for a sampling design. Vegetatio 52: 161–169.

    Google Scholar 

  • Braun-BlanquetJ. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Aufl. Springer, Wien.

    Google Scholar 

  • CarpenterS. R. & ChaneyJ. E. 1983. Scale of spatial pattern: four methods compared. Vegetatio 53: 153–160.

    Google Scholar 

  • CastroI., SterlingA. & GalianoE. F. 1986. Multi-species pattern analysis of Mediterranean pastures in three stages of ecological succession. Vegetatio 68: 37–42.

    Google Scholar 

  • ClaphamA. R. 1932. The form of the observational unit in quantitative ecology. J. Ecol. 20: 192–197.

    Google Scholar 

  • ClarkP. J. & EvansF. C. 1954. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35: 445–453.

    Google Scholar 

  • CochranW. G. 1977. Sampling techniques. 3rd ed. J. Wiley & Sons, New York.

    Google Scholar 

  • CoxT. F. & LewisT. 1976. A conditioned distance ratio method for analyzing spatial patterns. Biometrika 63: 483–491.

    Google Scholar 

  • CroyC. D. & DixR. L. 1984. Notes on sample size requirements in morphological plant ecology. Ecology 65: 662–666.

    Google Scholar 

  • DeVriesP. G. 1986. Sampling theory for forest inventory. Springer, Berlin.

    Google Scholar 

  • DietvorstP., van derMaarelE. & van derPuttenH. 1982. A new approach to the minimal area of a plant community. Vegetatio 50: 77–91.

    Google Scholar 

  • DigbyP. G. N. & KemptonR. A. 1987. Multivariate analysis of ecological communities. Chapman & Hall, London.

    Google Scholar 

  • DiggleP. J. 1979a. Statistical methods for spatial point patterns in ecology. In: CormackR. M. & OrdJ. K. (eds), Spatial and temporal analysis in ecology. pp. 95–150. Inter. Coop. Publ. House, Burtonsville, USA.

    Google Scholar 

  • DiggleP. J. 1979b. On parameter estimation and goodness-of-fit testing for spatial point patterns. Biometrics 35: 87–101.

    Google Scholar 

  • DiggleP. J. & MatérnB. 1980. On sampling designs for the study of point-event nearest neighbour distributions in R2. Scand. J. Statist. 7: 80–84.

    Google Scholar 

  • DiggleP. J. & terBraakC. J. F. 1982. Point sampling of binary mosaics in ecology. In: RannebyB. (ed.), Statistics in theory and practice. Essays in the honour of Bertil Matérn. pp. 107–122. Swedish Univ. Agric. Sci., Section of Forest Biometry, S-901 83, Umeå, Sweden.

    Google Scholar 

  • Elliott, J. M. 1983. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biol. Assoc. Sci. Publ. 25.

  • FeketeG. & SzöcsZ. 1974. Studies on interspecific association processes in space. Acta Bot. Acad. Sci. Hungary 20: 227–241.

    Google Scholar 

  • FinneyD. J. 1948. Random and systematic sampling in timber surveys. Forestry 22: 64–99.

    Google Scholar 

  • FinneyD. J. 1950. An example of periodic variation in forest sampling. Forestry 23: 96–111.

    Google Scholar 

  • FreeseF. 1961. Relation of plot size to variability: an approximation. J. Forestry 58: 679.

    Google Scholar 

  • GalianoE. F. 1982. Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio 49: 39–43.

    Google Scholar 

  • GalianoE. F. 1983. Detection of multi-species patterns in plant populations. Vegetatio 53: 129–138.

    Google Scholar 

  • GalianoE. F. 1985. The small-scale pattern of Cynodon dactylon in Mediterranean pastures. Vegetatio 63: 121–127.

    Google Scholar 

  • GauchH. G. 1982. Multivariate analysis of community data. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • GibsonD. J. & Greig-SmithP. 1986. Community pattern analysis: a method for quantifying community mosaic structure. Vegetatio 66: 41–47.

    Google Scholar 

  • GoffF. G. 1975. Comparison of species ordinations resulting from alternative indices of interspecific association and different number of included species. Vegetatio 31: 1–14.

    Google Scholar 

  • GoodallD. W. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Aust. J. Sci. Res., Ser. B 5: 1–41.

    Google Scholar 

  • GoodallD. W. 1961. Objective methods for the classification of vegetation. IV. Pattern and minimal area. Aust. J. Bot. 9: 162–196.

    Google Scholar 

  • GoodallD. W. 1974. A new method for the analysis of spatial pattern by random pairing of quadrats. Vegetatio 29: 135–146.

    Google Scholar 

  • GoodallD. W. & WestN. E. 1979. A comparison of techniques for assessing dispersion patterns. Vegetatio 40: 15–27.

    Google Scholar 

  • GreenR. H. 1979. Sampling design and statistical methods for environmental biologists. J. Wiley & Sons, New York.

    Google Scholar 

  • Greig-SmithP. 1952. The use of random versus contiguous quadrats in the study of the structure of plant communities. Ann. Bot. Lond. N.S. 16: 293–316.

    Google Scholar 

  • Greig-SmithP. 1983. Quantitative plant ecology. 3rd ed. U. California Press, Berkeley.

    Google Scholar 

  • HahnI. 1982. Einige Probleme der Probeentnahme bei der Schätzung der Arten und Individuendiversität. II. Eine mögliche Individuelzahnkorrektion. Bot. Közlem., Budapest 69: 59–70 (Hungarian with German summary).

    Google Scholar 

  • HaselA. A. 1938. Sampling errors in timber surveys. J. Agric. Res. 57: 713–736.

    Google Scholar 

  • HillM. O. 1973. The intensity of spatial pattern in plant communities. J. Ecol. 61: 225–235.

    Google Scholar 

  • Juhász-NagyP. & PodaniJ. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51: 129–140.

    Google Scholar 

  • JustesenS. H. 1932. Influence of size and shape of plots on the precision of field experiments with potatoes. J. Agric. Sci. 22: 366–372.

    Google Scholar 

  • KalamakarR. J. 1932. Experimental error and the field plot technique with potatoes. J. Agric. Sci. 22: 373–385.

    Google Scholar 

  • KenkelN. C. 1988a. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69: 1017–1024.

    Google Scholar 

  • KenkelN. C. 1988b. Spectral analysis of hummock-hollow pattern in a weakly minerotrophic mire. Vegetatio 78: 45–52.

    Google Scholar 

  • KershawK. A. 1961. Association and covariance analysis of plant communities. J. Ecol. 49: 643–654.

    Google Scholar 

  • KnappR. (ed.) 1984. Sampling methods and taxon analysis in vegetation science. Junk, The Hague.

    Google Scholar 

  • KulowD. L. 1966. Comparison of forest sampling designs. J. Forestry 64: 469–474.

    Google Scholar 

  • KwiatkowskaA. J. & SymonidesE. 1986. Spatial distribution of species diversity indices and their correlation with plot size. Vegetatio 68: 99–102.

    Google Scholar 

  • LaferrièreJ. E. 1987. A central location method for selecting random plots for vegetation surveys. Vegetatio 71: 75–77.

    Google Scholar 

  • LudwigJ. A. & GoodallD. W. 1978. A comparison of paired- with blocked-quadrat variance methods for the analysis of spatial pattern. Vegetatio 38: 49–59.

    Google Scholar 

  • LudwigJ. A. & ReynoldsJ. F. 1988. Statistical ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • MatthewsJ. A. 1978. An application of non-metric multidimensional scaling to the construction of an improved species plexus. J. Ecol. 66: 157–173.

    Google Scholar 

  • MountfordM. D. 1961. On E. C. Pielou's index of non-randomness. J. Ecol. 49: 271–275.

    Google Scholar 

  • Mueller-DomboisD. & EllenbergH. 1974. Aims and methods of vegetation ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • Noy-MeirI. & AndersonD. J. 1971. Multiple pattern analysis, or multiscale ordination: towards a vegetation hologram? In: PatilG. P., PielouE. C. & WatersW. E. (eds), Many species populations, ecosystems, and systems analysis. pp. 207–225. Penn. State U. Press, University Park, Pa.

    Google Scholar 

  • Noy-MeirI., TadmorN. H. & OrshanG. 1970. Multivariate analysis of desert vegetation. I. Association analysis at various quadrat sizes. Israel J. Bot. 19: 561–591.

    Google Scholar 

  • OrlóciL. 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • PechanecJ. F. & StewartG. 1940. Sagebrush-grass range sampling studies: size and structure of sampling units. J. Amer. Soc. Agron. 32: 669–682.

    Google Scholar 

  • PielouE. C. 1959. The use of point-to-plant distances in the study of the pattern of plant populations. J. Ecol. 47: 607–613.

    Google Scholar 

  • PielouE. C. 1962. The use of plant-to-neighbour distances for the detection of competition. J. Ecol. 50: 357–367.

    Google Scholar 

  • PielouE. C. 1977. Mathematical ecology. J. Wiley & Sons, New York.

    Google Scholar 

  • PodaniJ. 1984a. Spatial processes in the analysis of vegetation: theory and review. Acta Bot. Hung. 30: 75–118.

    Google Scholar 

  • PodaniJ. 1984b. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot. Hung. 30: 403–425.

    Google Scholar 

  • PodaniJ. 1986. Comparison of partitions in vegetation studies. Abst. Bot. 10: 235–290.

    Google Scholar 

  • PodaniJ. 1987. Computerized sampling in vegetation studies. Coenoses 2: 9–18.

    Google Scholar 

  • PrenticeI. C. & WergerM. J. A. 1985. Clump spacing in a desert dwarf shrub community. Vegetatio 63: 133–139.

    Google Scholar 

  • Ram BabuM., AgarwalC. & PuriD. N. 1981. Size and shape of plots and blocks for field experiments in natural grasslands in Agra ravines. Indian J. Agric. Sci. 51: 271–275.

    Google Scholar 

  • RenshawE. & FordE. D. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.

    Google Scholar 

  • RipleyB. D. 1977. Modelling spatial pattern. J. Royal Stat. Soc., Series B 39: 172–212.

    Google Scholar 

  • RipleyB. D. 1981. Spatial statistics. J. Wiley & Sons, New York.

    Google Scholar 

  • ScagelR., el-KassabyY. A. & EmanuelJ. 1985. Assessing sample size and variable number in multivariate data, with specific reference to cone morphology variation in a population of Picea sitchensis. Can. J. Bot. 63: 232–241.

    Google Scholar 

  • SmarttP. F. M. 1978. Sampling for vegetation survey: a flexible systematic model for sample location. J. Biogeogr. 5: 43–56.

    Google Scholar 

  • SmarttP. F. M. & GraingerJ. E. A. 1974. Sampling for vegetation survey: some aspects of the behaviour of unrestricted and stratified techniques. J. Biogeogr. 1: 193–206.

    Google Scholar 

  • SukhatmeP. V., SukhatmeB. V., SukhatmeS. & AsokC. 1984. Sampling theory of surveys with applications. Iowa State Univ. Press, Ames.

    Google Scholar 

  • UptonG. J. G. & FingletonB. 1985. Spatial data analysis by example. Vol. 1. Point pattern and quantitative data. J. Wiley & Sons, New York.

    Google Scholar 

  • VanDyneG. M., VogelW. G. & FisserH. G. 1963. Influence of small plot size and shape on range herbage production estimates. Ecology 44: 746–759.

    Google Scholar 

  • WiegertR. G. 1967. The selection of an optimum quadrat size for sampling the standing crop of grasses and forbs. Ecology 43: 125–129.

    Google Scholar 

  • WilksS. S. 1962. Mathematical statistics. J. Wiley & Sons, New York.

    Google Scholar 

  • WoldaH. 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.

    Google Scholar 

  • YandleD. O. & WyantH. V. 1981. Comparison of fixed-radius circular plot sampling with simple random sampling. Forest Sci. 27: 245–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenkel, N.C., Juhász-Nagy, P. & Podani, J. On sampling procedures in population and community ecology. Vegetatio 83, 195–207 (1989). https://doi.org/10.1007/BF00031692

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031692

Keywords

Navigation