Skip to main content
Log in

Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have used the promoter, 1st exon and 1st intron of the maize polyubiquitin gene (Ubi-1) for rice transformation experiments and revealed the characteristic expression of Ubi-1 gene: (1) Ubi-1 gene is not regulated systemically but rather individual cells respond independently to the heat or physical stress; (2) Ubi-1 gene changes its tissue-specific expression in response to stress treatment; (3) the expression of Ubi-1 gene is dependent on cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sharp, PM, Li, W-H: Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol 25: 58–64 (1987).

    PubMed  Google Scholar 

  2. Hershko, A: Ubiquitin-mediated protein degradation. J Biol Chem 263: 15237–15240 (1988).

    PubMed  Google Scholar 

  3. Rechsteiner, M: Ubiquitin-mediated pathways for intracellular proteolysis. Annu Rev Cell Biol 3: 1–30 (1987).

    PubMed  Google Scholar 

  4. Barsoum, J, Varskavsky, A: Preferential localization of variant nucleosomes near the 5′ end of the mouse dihydrofolate reductase gene. J Biol Chem 260: 7688–7697 (1985).

    PubMed  Google Scholar 

  5. Rechsteiner, M: Natural substrates of the ubiquitin proteolytic pathway. Cell 66: 615–618 (1991).

    Article  PubMed  Google Scholar 

  6. Jentsch, S, McGrath, JP, Varshavsky, A: The yeast DNA repair gene RAD 6 encodes a ubiquitin-conjugating enzyme. Nature 329: 131–134 (1987).

    Article  PubMed  Google Scholar 

  7. Finley, D, Bartel, B, Varshavsky, A: The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401 (1989).

    Article  PubMed  Google Scholar 

  8. Christensen, AH, Sharrock, RA, Quail, PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  9. Toki, S, Takamatsu, S, Nojiri, C, Ooba, S, Anzai, H, Iwata, M, Christensen, AH, Quail, PH, Uchimiya, H: Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100: 1503–1507 (1992).

    Google Scholar 

  10. Uchimiya, H, Iwata, M, Nojiri, C, Samarajeewa, PK, Takamatsu, S, Ooba, S, Anzai, H, Christensen, AH, Quail, PH, Toki, S: Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/technology 11: 835–836 (1993).

    Article  Google Scholar 

  11. Chu, CC, Wang, CC, Sun, CS, Hsu, C, Yin, KC, Chu, CY, Bi, FY: Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18: 659–668 (1975).

    Google Scholar 

  12. Genschik, P, Parmentier, Y, Durr, A, Marbach, J, Criqui, M-C, Jamet, E, Fleck, J: Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol 20: 897–910 (1992).

    PubMed  Google Scholar 

  13. Cornejo, M-J, Luth, D, Blankenship, KM, Anderson, OD, Blechl, AE: Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23: 567–581 (1993).

    PubMed  Google Scholar 

  14. Matsuki, R, Onodera, H, Yamauchi, T, Uchimiya, H: Tissue-specific expression of the rolC promoter of Ri plasmid in transgenic rice plants. Mol Gen Genet 220: 12–16 (1989).

    Article  Google Scholar 

  15. Goto, F, Toki, S, Uchimiya, H: Inheritance of a co-transferred foreign gene in the progenies of transgenic rice plants. Transgenic Res 2: 300–305 (1993).

    Google Scholar 

  16. Gritz, L, Davies, J: Plasmid-encoded hygromycin-B resistance—the sequence of hygromycin-B phosphotrans-ferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188 (1983).

    PubMed  Google Scholar 

  17. Jefferson, RA, Kavanagh, TA, Bevan, M: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  18. Sugaya, S, Hayakawa, K, Handa, T, Uchimiya, H: Cell-specific expression of the rolC gene of the TL-DNA of Ri-plasmid in transgenic tobacco plants. Plant Cell Physiol 30: 649–653 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takimoto, I., Christensen, A.H., Quail, P.H. et al. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26, 1007–1012 (1994). https://doi.org/10.1007/BF00028868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028868

Key words

Navigation