Skip to main content
Log in

Structure of a cyanobacterial gene encoding the 50S ribosomal protein L9

  • Update Section
  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The rplI gene encoding the ribosomal protein L9 was found 4 kbp downstream from the desA gene, but on the opposite strand, in the genome of the cyanobacterium Synechocystis PCC6803. The deduced amino acid sequence is homologous to the sequences of the L9 proteins from Escherichia coli and chloroplasts of Arabidopsis and pea. The gene is present as a single copy in the chromosome and is transcribed as a mRNA of 0.64 kb. An open reading frame of unknown function (ORF291) was found in the upstream region of the rplI gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seideman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology, pp. 4.3.1–4.3.2 Greene Publishing Associates/Wiley Interscience, New York (1987).

    Google Scholar 

  2. Buttarelli FR, Calogero RA, Tiboni O, Gualerzi CO: Characterization of the str operon genes from Spirulina platensis and their evolutionary relationship to those of other prokaryotes. Mol Gen Genet. 217: 97–104 (1989).

    Article  PubMed  Google Scholar 

  3. Clegg C, Hayes D: Identification of neighbouring proteins in the ribosomes of Escherichia coli. Eur J Biochem 42: 21–28 (1974).

    PubMed  Google Scholar 

  4. Dayhoff MO: A model of evolutionary change in proteins. Matrices for detecting distant relationships. In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure, vol 5, suppl 3 pp. 1–8. National Biomedical Research Foundation, Washington, DC (1978).

    Google Scholar 

  5. Engel JN, Pollack J, Perara E, Ganem D: Heat shock response of murine Chlamydia trachomatis. J Bact 172: 6959–6972 (1990).

    PubMed  Google Scholar 

  6. Expert-Bezancon A, Barritault D, Clegg JCS, Milet M, Khouvine Y, Hayes DH: Identification of neighbouring proteins in E. coli 50S ribosomes. FEBS Lett 59: 64–69 (1975).

    Article  PubMed  Google Scholar 

  7. Feng DF, Johnson MS, Doolittle RF: Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21: 112–125 (1985).

    Google Scholar 

  8. Gantt JS: Nucleotide sequences of cDNAs encoding four complete nuclear-encoded plastid ribosomal proteins. Curr Genet 14: 519–528 (1988).

    PubMed  Google Scholar 

  9. Kamp RM, Wittman-Liebold B: The primary structure of protein L9 from the Escherichia coli ribosome. FEBS Lett 149: 313–319 (1982).

    Article  Google Scholar 

  10. Kenny JW, Traut RR: Identification of fifteen neighboring protein pairs in the Escherichia coli 50 S ribosomal subunit crosslinked with 2-iminothiolane. J Mol Biol 127: 243–263 (1979).

    Article  PubMed  Google Scholar 

  11. Kimura K, Dijk K, Heiland I: The primary structure of protein BL17 isolated from the large subunit of the Bacillus stearothermophilus ribosome. FEBS Lett 121: 323–326 (1980).

    Article  Google Scholar 

  12. Marquardt O, Roth HE, Wystup G, Nierhaus KH: Binding of Escherichia coli ribosomal proteins to 23S RNA under reconstitution conditions for the 50S subunit. Nucl Acids Res 6: 3641–3650 (1979).

    PubMed  Google Scholar 

  13. Meng BY, Shinozaki K, Sugiura M: Genes for the ribosomal proteins S12 and S7 and elongation factors EF-G and EF-Tu of the cyanobacterium, Anacystis nidulans: structural homology between 16S rRNA and S7 mRNA. Mol Gen Genet 216: 25–30 (1989).

    Article  PubMed  Google Scholar 

  14. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453 (1970).

    PubMed  Google Scholar 

  15. Newton I, Brimacombe R: Two specific ribonucleoprotein fragments from the 50-S sub-particle of Escherichia coli ribosomes. Eur J Biochem 48: 513–518 (1974).

    PubMed  Google Scholar 

  16. Ramakrishnan V, Gershman SE: Cloning, sequencing, and overexpression of genes for ribosomal proteins from Bacillus stearothermophilus. J Biol Chem 226: 880–885 (1991).

    Google Scholar 

  17. Risler JL, Delorme MO, Delacroix H, Henaut A: Amino acid substitutions in structurally related proteins: a pattern-recognition approach. J Mol Biol 204: 1019–1029 (1988).

    PubMed  Google Scholar 

  18. Roth HE, Nierhaus KH: Structural and functional studies of ribonucleoprotein fragments isolated from Escherichia coli 50S ribosomal subunits. J Mol Biol 94: 111–121 (1975).

    PubMed  Google Scholar 

  19. Sanangelantoni AM, Calogero RC, Butarelli FR, Gualerzi CO, Tiboni O: Organization and nucleotide sequence of the genes for ribosomal protein S2 and elongation factor Ts in Spirulina platensis. FEMS Microbiol Lett 66: 141–146 (1990).

    Article  Google Scholar 

  20. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  21. Schnier J, Kitakawa M, Isono K: The nucleotide sequence of an Escherichia coli chromosomal region containing the genes for ribosomal proteins S6, S18, L9 and an open reading frame. Mol Gen Genet 204: 126–132 (1986).

    Article  PubMed  Google Scholar 

  22. Sibold C, Subramanian AR: Cloning and characterization of the genes for ribosomal proteins L10 and L12 from Synechocystis Sp. PCC6803: comparison of gene clustering pattern and protein sequence homology between cyanobacteria and chloroplasts. Biochim Biophys Acta 1050: 61–68 (1990).

    PubMed  Google Scholar 

  23. Thompson MD, Jacks CM, Lenvik TR, Gantt JS: Characterization of rps17, rpl9 and rpl15: three nucleusencoded plastid ribosomal protein genes. Plant Mol Biol 18: 931–944 (1992).

    PubMed  Google Scholar 

  24. Traut RR, Lambert JM, Boileau G, Kenny JW: Protein topography of Escherichia coli ribosomal subunits as inferred from protein crosslinking. In: Chambliss G et al. (eds), Ribosomes, pp. 89–110. University Park Press, Baltimore, MD (1979).

    Google Scholar 

  25. Wada H, Gombos Z, Murata N: Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203 (1990).

    Article  PubMed  Google Scholar 

  26. Wada H, Gombos Z, Sakamoto T, Murata N: Genetic manipulation of the extent of desaturation of fatty acids in membrane lipids in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 33: 535–540 (1992).

    Google Scholar 

  27. Williams JGK: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Meth Enzymol 167: 766–778 (1988).

    Google Scholar 

  28. Wittman HG: Components of bacterial ribosomes. Annu Rev Biochem 51: 155–183 (1982).

    Article  PubMed  Google Scholar 

  29. Wittman HG: Architecture of prokaryotic ribosomes. Annu Rev Biochem 52: 35–65 (1983).

    Article  PubMed  Google Scholar 

  30. Woese CR: Bacterial evolution. Microbiol Rev 51: 221–271 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malakhov, M.P., Wada, H., Los, D.A. et al. Structure of a cyanobacterial gene encoding the 50S ribosomal protein L9. Plant Mol Biol 21, 913–918 (1993). https://doi.org/10.1007/BF00027122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027122

Key words

Navigation