Skip to main content
Log in

Production and decomposition processes in a saline meromictic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1−1) was often similar to phytoplankton carbon (44–300 µgC 1−1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1−1, bacteriochlorophyll a 1500–70001µ 1−1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m−2 d−1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1−1 h−1) than for glucose (0.3–1.4 µgC 1−1 h−1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association & Water Pollution Control Federation, 1985. Standard methods for the examination of water and wastewater, 16th ed. APHA, Wash. D.C. 1268 pp.

    Google Scholar 

  • Anderson, G. C., 1958. Some limnological features of a shallow saline meromictic lake. Limnol. Oceanogr. 3: 259–270.

    Google Scholar 

  • Braunegg, G., B. Sonnleitner & R. M. Lafferty, 1978. A rapid gas chromatographic method for the determination of poly-hydroxybutyric acid in microbial biomass. Biotechnol. 6: 29–37.

    Google Scholar 

  • Cloern, J. E., B. E. Cole & R. S. Oremland, 1983. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28: 1049–1061.

    Google Scholar 

  • Cloern, J. E., B. E. Cole & S. M. Wienke, 1987. Big Soda Lake (Nevada). 4. Vertical fluxes of particulate matter: Seasonality and variations across the chemocline. Limnol. Oceanogr. 32: 815–824.

    Google Scholar 

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Google Scholar 

  • Comeau, Y., W. K. Oldham & K. J. Hall, 1987. Dynamics of carbon reserves in biological dephosphatation of wastewater. Adv. in Water Pollut. Control. 39#x2013;55 IAWPRC Int. Conf. in Rome, Sept. 1987.

  • Croome, R. L. & P. A. Tyler, 1984. Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh. int. Ver. Limnol. 22: 1216–1223.

    Google Scholar 

  • Culver, D. A. & G. J. Brunskill, 1969. Fayetteville Green Lake v. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14: 862–873.

    Google Scholar 

  • Dawes, E. A. & P. J. Senior, 1973. The role and regulation of energy reserve polymers in microorganisms. Adv. Microbial Physiol. 10: 135–266.

    Google Scholar 

  • Fuhram, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation of field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Fuhram, J. A., H. W. Ducklow, D. L. Kirchman, J. Hudak, G. B. McManus & J. Kramer, 1986. Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31: 627–636.

    Google Scholar 

  • Griffiths, R. P., S. S. Hayasaka, T. M. McNamara & R. Y. Morita, 1977. Comparison between two methods of assaying relative microbial activity in marine environments. Appl. envir. Microbiol. 34: 801–805.

    Google Scholar 

  • Guerrero, R., E. Montesinos, C. Pedros-Alio, I. Esteves, J. Mas, H. van Gemerden, P. A. G. Hofman & J. F. Bakker, 1985. Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol. Oceanogr. 30: 919–931.

    Google Scholar 

  • Hammer, U. T., R. C. Haynes, J. M. Heseltine & S. M. Swanson, 1975. The saline lakes of Saskatchewan. Verh. int. Ver. Limnol. 19: 589–598.

    Google Scholar 

  • Hayden, J. F., 1972. A limnological investigation of a meromictic lake (Medicine Lake, South Dakota), M. Sc., Univ. of South Dakota, Vermillion.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hudec, P. P. & P. Sonnenfeld,1980. Comparison of Caribbean solar ponds with inland solar lakes of British Columbia. in A. Nissenbaum (ed.) Hypersaline brines and evaporitic environments. Elsevier, Amsterdam, 101–114.

    Google Scholar 

  • Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Lovell, C. R. & A. Konopka, 1985. Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation. Appl. envir. Microbiol. 49: 492–500.

    Google Scholar 

  • Murphy, T. P., K. J. Hall & I. Yesaki, 1983. Coprecipitation of phosphorus with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 58–69.

    Google Scholar 

  • Northcote, T. G. & T. G. Halsey, 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish Res. Bd, Can. 26: 1763–1787.

    Google Scholar 

  • Northcote, T. G. & K. J. Hall, 1983. Limnological contrasts and anomalies in two adjacent saline lakes. Hydrobiologia 105: 179–194.

    Google Scholar 

  • Northcote, T. G. & K. J. Hall,MS. Vernal microstratification patterns in a meromictic saline lake: their causes and biological significance. Hydrobiologia

  • Parkin, T. B. & T. D. Brock, 1980. Photosynthetic bacterial production in lakes: The effect of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Priscu, J. C., R. P. Axler, R. G. Carlton, J. E. Reuter, P. A. Arneson & C. R. Goldman, 1982. Vertical profiles of primary productivity biomass and physiochemical properties in meromictic Big Soda Lake, Nevada, USA. Hydrobiologia 96: 113–120.

    Google Scholar 

  • Riemann, B., J. A. Fuhram & F. Azam, 1982. Bacterial secondary production in freshwater measured by 3H-thymidine incorporation method. Microb. Ecol. 8: 101–114.

    Google Scholar 

  • Scavia, D. & G. A. Laird, 1987. Bacterioplankton in Lake Michigan: Dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033.

    Google Scholar 

  • Strickland, J. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd, Can. 167.

  • Takahashi, M. & S. Ichimura, 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese Lakes. Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.

    Google Scholar 

  • van Gemerden, H. & H. H. Beeftink, 1983. Ecology of phototrophic bacteria. in J. G. Ormerod (ed.). The phototrophic bacteria, Studies in Microbiol., 4: 146–179, Univ. of Cal. Press, Berkley.

    Google Scholar 

  • van Gemerden, H., E. Montesinos, J. Mas & R. Guerrero, 1985. Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol. Oceanogr. 30: 932–943.

    Google Scholar 

  • Veldhius, M. J. W. & H. van Gemerden, 1986. Competition between purple and brown bacteria in a stratified lake: Sulfide, acetate, and light as limiting factors. FEMS Microbial Ecol. 38: 31–38.

    Google Scholar 

  • Wetzel, R. G., 1973. Productivity investigations of interconnected lakes I. The eight lakes of the Oliver and Walters chains, northeastern Indiana. Hydrobiol. Stud. 3: 91–143.

    Google Scholar 

  • Wetzel, R. G.,1975.Limnology, W. B. Saunders Co. Toronto. 743 pp.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. W. B. Saunders Co. Philadelphia. 357 pp.

    Google Scholar 

  • Wood, L. W., 1985. Chloroform-methanol extraction of chlorophyll a. Can. J. Fish. aquat. Sci. 42: 38–43.

    Google Scholar 

  • Zehr, J. P., R. W. Harvey, R. S. Oremland, J. E. Cloern, L. H. George & J. L. Lane, 1987. Big Soda Lake (Nevada). I. Pelagic bacterial heterotrophy and biomass. Limnol. Oceanogr. 32: 781–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, K.J., Northcote, T.G. Production and decomposition processes in a saline meromictic lake. Hydrobiologia 197, 115–128 (1990). https://doi.org/10.1007/BF00026944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026944

Key words

Navigation