Skip to main content
Log in

Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The past 25 years, 1686 potato accessions, representing 100 species in the genus Solanum L., subgenus Potatoe, section Petota, were evaluated for field resistance to one or more of the following insect pests: green peach aphid, Myzus persicae (Sulzer); potato aphid, Macrosiphum euphorbiae (Thomas); Colorado potato beetle, Leptinotarsa decemlineata (Say); potato flea beetle, Epitrix cucumeris (Harris); and potato leafhopper, Empoasca fabae (Harris). Accessions highly resistant to green peach aphid were identified within 36 species, to potato aphid within 24 species, to Colorado potato beetle within 10 species, to potato flea beetle within 25 species, and to potato leafhopper within 39 species. Resistance levels were characteristic within Solanum species. Insect resistance appears to be a primitive trait in wild potatoes. Susceptibility was most common in the primitive and cultivated Tuberosa. Insect resistance was also characteristic of the most advanced species. The glycoalkaloid tomatine was associated with field resistance to Colorado potato beetle and potato leafhopper. Other glycoalkaloids were not associated with field resistance at the species level. Dense hairs were associated with resistance to green peach aphid, potato flea beetle, and potato leafhopper. Glandular trichomes were associated with field resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Significant correlations between insect score and altitude of original collection were observed in six of thirteen species. Species from hot and arid areas were associated with resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Species from cool or moist areas tended to be resistant to potato aphid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EBN:

Endosperm Balance Number

References

  • Avé, D.A. & W.M. Tingey, 1986. Phenolic constituents of glandular trichomes on solanum berthaultii and S. polyadenium. Am. Potato J. 63: 473–480.

    Google Scholar 

  • Beck, S.D., 1965. Resistance of plants to insects. Annu. Rev. Entomol. 10: 207–232.

    Google Scholar 

  • Blackwelder, R.E., 1946. Checklist of the coleopterous insects of Mexico, Central America, the West Indies, and South America. US Natl. Mus. Bull. 185, Part 4.

  • Blackman, R.L. & V.F. Eastop, 1984. Aphids on the World's Crops. John Wiley and Sons, New York.

    Google Scholar 

  • Bravo P., R., J. Carhuamaca T., & R. Aldana M., 1986. Pulguilla de la papa: Biologia, daños y control. Boletin técnico AÑO V-N°5, Programa Nacional de Papa-INIPA CIPA XII Huancayo-Perú.

  • Dahlman, D.L. & E.T. Hibbs, 1967. Responses of Empoasca fabae (Cicadellidae: Homoptera) to tomatine, solanine, leptine I; tomatidine, solanidine, and demissidine. Ann. Entomol. Soc. Am. 60: 732–740.

    Google Scholar 

  • Dimock M.B. & W.M. Tingey, 1985. Resistance in Solanum spp. to the Colorado potato beetle: mechanisms, genetic resources and potential. p. 79–106. In: D.N. Ferro & R.H. Voss (Eds). Proc. of the Symp. on the Colorado Potato Beetle, XVIIth Int. Congr. Entomol. Mass. Agric. Exp. Stn. Res. Bull. 704. Amherst, Mass, USA.

  • Dixon, W.J., M.B. Brown, L. Engelman, J.W. Frane, M.A. Hill, R.I. Jennrich & J.D. Toporek, 1983. BMDP Statistical Software. Univ. Calif. Press, Berkeley.

    Google Scholar 

  • Ehlenfeldt, M.K. & R.E. HannemanJr., 1984. The use of Endosperm Balance Number and 2n gametes to transfer exotic germplasm in potato. Theor. Appl. Genet. 68: 155–161.

    Google Scholar 

  • Flanders, K.L. & E.B. Radcliffe, 1992. Host plant resistance in Solanum germplasm: An appraisal of resistance to Colorado potato beetle, potato leafhopper, and potato flea beetle. Minn. Agric. Exp. Stn. Bull. 599–1992, St. Paul, Minnesota, USA.

  • Gell, P.G.H., J.G. Hawkes & S.T.C. Wright, 1960. The application of immunological methods to the taxonomy of species within the genus Solanum. Proc. R. Soc. London Ser. B 151: 364–383.

    Google Scholar 

  • Gibson, R.W., 1971. Glandular hairs providing resistance to aphids in certain wild potato species. Ann. Appl. Biol. 68: 113–119.

    Google Scholar 

  • Gould, F., 1983. Genetics of plant-herbivore systems: interactions between applied and basic study. p. 599–653. In: R.F. Denno & M.S. McClure (Eds). Variable Plants and Herbivores in Natural and Managed Systems, Academic Press, New York.

    Google Scholar 

  • Gregory, P., 1984. Glycoalkaloid composition of potatoes: Diversity and biological implications. Am. Potato J. 61: 115–122.

    Google Scholar 

  • Gregory, P., S.L. Sinden, S.F. Osman, W.M. Tingey & D.A. Chessin, 1981. Glycoalkaloids of wild, tuber-bearing Solanum species. J. Agric. Food Chem. 29: 1212–1215.

    Google Scholar 

  • Hanneman, R.E.Jr., 1989. The potato germplasm resource. Am. Potato J. 66: 655–667.

    Google Scholar 

  • Hanneman R.E., Jr. & J.B. Bamberg, 1986. Inventory of tuber-bearing Solanum species. Wis. Agric. Exp. Sta. Bull. 533, Rev., Madison, Wisconsin, USA.

  • Hawkes, J.G., 1990. The Potato: Evolution, Biodiversity and Genetic Resources. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Hawkes, J.G. & J.P. Hjerting, 1969. The Potatoes of Argentina, Brazil, Paraguay, and Uruguay. A Biosystematic Study. Clarendon Press, Oxford.

    Google Scholar 

  • Hawkes, J.G. & J.P. Hjerting, 1989. The Potatoes of Bolivia. Their Breeding Value and Evolutionary Relationships. Clarendon Press, Oxford.

    Google Scholar 

  • Hosaka, K., Y. Ogihara, M. Matsubayashi & K. Tsunewaki, 1984. Phylogenetic relationship between the tuberous Solanum species as revealed by restriction endonuclease analysis of chloroplast DNA. Jpn. J. Genet. 59: 349–369.

    Google Scholar 

  • Johnston, S.A. & R.E. HannemanJr., 1980. Support of the Endosperm Balance Number hypothesis utilizing some tuberbearing Solanum species. Am. Potato J. 57: 7–14.

    Google Scholar 

  • Johnston, S.A. & R.E. HannemanJr., 1982. Manipulations of Endosperm Balance Number overcome crossing barriers between diploid Solanum species. Science 217: 446–448.

    Google Scholar 

  • Jones, R.A.C., 1981. The ecology of viruses infecting wild and cultivated potatoes in the Andean region of South America. p. 89–107. In: J.M. Thresh (Ed). Pests, Pathogens, and Vegetation. Pitman, London.

    Google Scholar 

  • Kuhn, R. & I. Löw, 1955. Resistance factors against Leptinotarsa decemlineata Say, isolated from the leaves of wild Solanum species. p. 122–132. In: M.G. Sevag, T.D. Reid & O.E. Reynolds (Eds). Origins of Resistance to Toxic Agents. Academic Press, New York.

    Google Scholar 

  • Levin, D.A., 1973. The role of trichomes in plant defense. Q. Rev. Biol. 48: 3–15.

    Google Scholar 

  • Miller, J.C. & S.D. Tanksley, 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80: 437–448.

    Google Scholar 

  • Mitter, C., B. Farrell & D.J. Futuyma, 1991. Phylogenetic studies on insect-plant interactions: insights into the genesis of diversity. Trends Ecol. & Evol. 6: 290–293.

    Google Scholar 

  • Neal, J.J., W.M. Tingey & J.C. Steffens, 1990. Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J. Chem. Ecol. 16: 487–497.

    Google Scholar 

  • Neck, R.W., 1983. Foodplant ecology and geographical range of the Colorado potato beetle and a related species (Leptinotarsa spp.) (Coleoptera: Chrysomelidae). Coleopt. Bull. 37: 177–182.

    Google Scholar 

  • Norris, D.M. & M. Kogan, 1980. Biochemical and morphological bases of resistance. p. 63–85. In: F.G. Maxwell & P.R. Jennings (Eds). Breeding Plants Resistant to Insects. John Wiley & Sons, New York.

    Google Scholar 

  • Ochoa, C.M., 1990. The Potatoes of South America: Bolivia. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Osman, S.F., S.F. Herb, T.J. Fitzpatrick & S.L. Sinden, 1976. Commersonine, a new glycoalkaloid from two Solanum species. Phytochemistry 15: 1065–1067.

    Google Scholar 

  • Palmer, J.D. & D. Zamir, 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc. Natl. Acad. Sci. USA 79: 506–510.

    Google Scholar 

  • Plaisted, R.L. & R.W. Hoopes, 1989. The past record and future prospects for the use of exotic potato germplasm. Am. Potato J. 66: 603–627.

    Google Scholar 

  • Poos, F.W., 1929. Leafhopper injury to legumes. J. Econ. Entomol. 22: 146–153.

    Google Scholar 

  • Radcliffe, E.B. & F.I. Lauer, 1968. Resistance to Myzus persicae (Sulzer), Macrosiphum euphorbiae (Thomas), and Empoasca fabae (Harris) in the wild tuber-bearing Solanum (Tourn.) L. species. Minn. Agric. Exp. Stn. Tech. Bull. 259, St. Paul, Minnesota, USA.

  • Radcliffe, E.B. & F.I. Lauer, 1971. Resistance to green peach aphid and potato aphid in introductions of wild tuber-bearing Solanum species. J. Econ. Entomol. 64: 1260–1266.

    Google Scholar 

  • Radcliffe, E.B., F.I. Lauer, M.-H. Lee & D.P. Robinson, 1981. Evaluation of the United States potato collection for resistance to green peach aphid and potato aphid. Minn. Agr. Exp. Stn. Tech. Bull. 331, St. Paul, Minnesota, USA.

  • Radcliffe, E.B., W.M. Tingey, R.W. Gibson, L. Valencia & K.V. Raman, 1988. Stability of green peach aphid (Homoptera: Aphididae) resistance in wild potato species. J. Econ. Entomol. 81: 361–367.

    Google Scholar 

  • Ross, H., 1986. Potato breeding-problems and perspectives. Fortschr. Pflanzenzücht 13.

  • Ross, H.H. & T.E. Moore, 1957. New species in the Empoasca fabae complex (Hemiptera, Cicadellidae). Ann. Entomol. Soc. Am. 50: 118–122.

    Google Scholar 

  • Ross, H.H., G.C. Decker & H.B. Cunningham, 1964. Adaptation and differentiation of temperate phylogenetic lines from tropical ancestors in Empoasca. Evolution 18: 639–651.

    Google Scholar 

  • Rowe, P.R., 1969. Nature, distribution, and use of diversity in the tuber-bearing Solanum species. Econ. Bot. 23: 330–338.

    Google Scholar 

  • Ruppel, R.F. & D.M. Delong, 1956. Empoasca (Homoptera: Cicadellidae) from highland crops of Colombia. Bull. Brooklyn Entomol. Soc. 51: 85–92.

    Google Scholar 

  • Sinden, S.L., L.L. Sanford & S.F. Osman, 1980. Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter. Am. Potato J. 57: 331–343.

    Google Scholar 

  • Spooner, D.M. & K.J. Sytsma, 1992. Reexamination of series relationships of Mexican and Central American wild potatoes (Solanum sect. Petota): Evidence from chloroplast DNA restriction site variation. Syst. Bot. 17: 431–448.

    Google Scholar 

  • Spooner, D.M., G.J. Anderson & R.K. Jansen, 1990. Chloroplast DNA phylogeny of tomatoes, potatoes, and pepinos (Solanum subgenus Potatoe). Am. J. Bot. (Suppl.) 77: 156.

    Google Scholar 

  • Spooner, D.M., K.J. Sytsma & E. Conti, 1991. Chloroplast DNA evidence for genome differentiation in wild potatoes (Solanum sect. Petota: Solanaceae). Am. J. Bot. 78: 1354–1366.

    Google Scholar 

  • Spooner, D.M. & R.G. van den Berg, 1991. Species boundaries of Solanum berthaultii Hawkes and S. tarijense Hawkes. Am. Potato J. 68: 635 (Abstr.).

    Google Scholar 

  • Stürckow, B. & I. Löw, 1961. Die wirkung einiger Solanum-alkaloidglykoside auf den Kartoffelkäfer, Leptinotarsa decemlineata Say. Entomol. Exp. Appl. 4: 133–142.

    Google Scholar 

  • Tingey, W.M., 1991. Potato glandular trichomes: defensive activity against insect attack. p. 126–135. In: P.A. Hedin (Ed). Naturally Occurring Pest Bioregulators. ACS Symposium Series No. 449, Am. Chem. Soc.

  • Tingey, W.M. & J.E. Laubengayer, 1981. Defense against the green peach aphid and potato leafhopper by glandular trichomes of Solanum berthaultii. J. Econ. Entomol. 74: 721–725.

    Google Scholar 

  • Tingey, W.M. & S.L. Sinden, 1982. Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leafhopper, and potato flea beetle in Solanum berthaultii. Am. Potato J. 59: 95–106.

    Google Scholar 

  • Tingey, W.M., S.A. Mehlenbacher & J.E. Laubengayer, 1981. Occurrence of glandular trichomes in wild Solanum species. Am. Potato J. 58: 81–83.

    Google Scholar 

  • Tower, W.L., 1906. An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa. Carnegie Institution of Washington, Publ. 48.

  • US Dep. Agric. Agric. Res. Serv. 1954–1987. Plant Inventory, Nos 155–195.

  • Van Gelder, W.M.J., J.H. Vinke & J.J.C. Scheffer, 1988. Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica Supplement: 147–158.

  • Williams, C.E., G.J. Hunt & J.P. Helgeson, 1990. Fertile somatic hybrids of Solanum species: RFLP analysis of a hybrid and its sexual progeny from crosses with patato. Theor. Appl. Genet. 80: 545–551.

    Google Scholar 

  • Young, D.A.Jr., 1953. Argentine leafhoppers of the genus Empoasca (Homoptera, Cicadellidae). Acta Zool. Lilloana 14: 375–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanders, K.L., Hawkes, J.G., Radcliffe, E.B. et al. Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61, 83–111 (1992). https://doi.org/10.1007/BF00026800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026800

Key words

Navigation