Skip to main content
Log in

Structure and expression of the Arabidopsis CaM-3 calmodulin gene

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Genomic and cDNA sequences encoding a calmodulin (CaM) gene from Arabidopsis (ACaM-3) have been isolated and characterized. ACaM-3 represents a sequence distinct from two previously isolated Arabidopsis CaM cDNA clones. A 2.3 kb Eco RI restriction fragment was sequenced and found to encode a complete CaM-coding sequence interrupted by a single 491 bp intron, together with 750 bp and 600 bp of 5′ and 3′ flanking sequences, respectively. The polypeptide encoded by ACaM-3 is identical to that encoded by ACaM-2 and it differs from the one encoded by ACaM-1 by four of 148 residues. The putative promoter of ACaM-3 was atypical of CaM genes previously isolated from animals in that it contained consensus TATA and CAAT box sequences and lacked GC-rich regions. Two DNA sequence elements closely resembling cyclic AMP regulatory elements, which have been identified in animal CaM genes, were located in the 5′ flanking region of ACaM-3. Northern blot and polymerase chain reaction amplification assays confirmed that each of the three ACaM mRNAs were expressed in similar but distinct patterns in different organs. ACaM-1 mRNA was the only species detectable in root RNA fractions, and ACaM-3 mRNA could not be detected in floral stalks. Accumulation of each of the three CaM mRNAs in leaves was induced by a touch stimulus, but the kinetics and extent of the induction varied among the three mRNA species. Run-on transcription assays indicated that a portion of the differences in accumulation of ACaM-1, 2, and 3 mRNAs in leaves and siliques was attributable to differences in their net rates of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnett MJ, Long SR: Nucleotide sequences of an alfalfa calmodulin cDNA. Nucl Acids Res 18: 3395 (1990).

    PubMed  Google Scholar 

  2. Beltz GA, Jacobs KA, Eickbush TH, Cherbas PT, Kafatos F: Isolation of multigene families and determination of homologies by filter hybridization methods. Meth Enzymol 100: 266–285 (1983).

    PubMed  Google Scholar 

  3. Birnboim HC. A rapid alkaline extraction method for the isolation of plasmid DNA. Meth Enzymol 100: 243–255 (1983).

    PubMed  Google Scholar 

  4. Braam J, Davis RW: Rain, wind and touch induced expression of calmodulin and calmodulin related genes in Arabidopsis. Cell 60: 357–364 (1990).

    Article  PubMed  Google Scholar 

  5. Brown EG, Newton RP. Cyclic AMP and higher plants. Phytochemistry 20: 2453–2463 (1981).

    Article  Google Scholar 

  6. Campbell WH, Gowri G. Codon usage in higher plants, green algae and cyanobacteria. Plant Physiol 92: 1–11 (1990).

    Google Scholar 

  7. Davis TN, Urdea MS, Masiarz FR, Thorner J: Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47: 423–431 (1986).

    Article  PubMed  Google Scholar 

  8. Davis TN, Thorner J: Vertebrate and yeast calmodulin, despite significant sequence divergence are functionally interchangeable. Proc Natl Acad Sci USA 86: 7909–7913 (1989).

    PubMed  Google Scholar 

  9. Dynan WS: Promoters for housekeeping genes. Trends Genet 2: 196–197 (1986).

    Article  Google Scholar 

  10. Epstein P, Simmen RCM, Tanaka T, Means AR: Isolation and structural analysis of the chromosomal gene for chicken calmodulin. Meth Enzymol 139: 217–229 (1987).

    PubMed  Google Scholar 

  11. Epstein PN, Christenson MA, Means AR: Chicken calmodulin promoter activity in proliferating and differentiated cells. Mol Endocrinol 3: 193–202 (1989).

    PubMed  Google Scholar 

  12. Fischer R, Koller M, Flura M, Mathews S, Strehler-Page M, Kribs J, Penniston JT, Carafoli E, Strehler E: Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem 263: 17055–17062 (1988).

    PubMed  Google Scholar 

  13. Fulton C, Chang KL, Lai EY: Two calmodulins in Naegleria flagellates: Characterization, intracellular segregation, and programmed regulation of mRNA abundance during differentiation. J Cell Biol 102: 1671–1678 (1986).

    Article  PubMed  Google Scholar 

  14. Goldsbrough P, Cullis C: Characterization of the genes for rRNA in flax. Nucl Acids Res 9: 1301–1309 (1981).

    PubMed  Google Scholar 

  15. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Article  PubMed  Google Scholar 

  16. Hall TC, Ma Y, Buchbinder BU, Pyne JW, Sun SM, Bliss FA: Messenger RNA for G1 protein of french bean seeds. Proc Natl Acad Sci USA 75: 3196–3200 (1978).

    Google Scholar 

  17. Hanley B, Schuler M: Plant intron sequences: evidence for distinct groups of introns. Nucl Acids Res 16: 7159–7176 (1988).

    PubMed  Google Scholar 

  18. Hardy DO, Bender PK, Kretsinger RH: Two calmodulin genes are expressed in Arbacia punctulata. J Mol Biol 199: 223–237 (1987).

    Google Scholar 

  19. Hawkins JD: A survey on intron and exon lengths. Nucl Acids Res 16: 9893–9908 (1988).

    PubMed  Google Scholar 

  20. Henikoff S. A unidirectional digestion with Exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359 (1984).

    Article  PubMed  Google Scholar 

  21. Hodgson CP, Fisk RZ: Hybridization probe size control: optimized ‘oligolabelling’. Nucl Acids Res 15: 6295 (1987).

    PubMed  Google Scholar 

  22. Jena PK, Reddy ASN, Poovaiah BW: Molecular cloning and sequencing of a cDNA for plant calmodulin: signal-induced changes in the expression of calmodulin. Proc Natl Acad Sci USA 86: 3644–3648 (1989).

    PubMed  Google Scholar 

  23. Jendrisak JJ, Guilfoyle TJ: Eukaryotic RNA Polymerases: comparative subunit structures, immunological properties, and alpha-amanitin sensitivities of the class II enzymes of higher plants. Biochemistry 17: 1322–1327 (1978).

    PubMed  Google Scholar 

  24. Kadonaga JT, Jones KA, Tijian R: Promoter specific activation of RNA Polymerase II transcription by Sp1. Trends Biochem Sci 11: 20–23 (1986).

    Article  Google Scholar 

  25. Koller M, Schnyder B, Strehler EE: Structural organization of the human CAMIII calmodulin gene. Biochim Biophys Acta 1087: 180–189 (1990).

    PubMed  Google Scholar 

  26. Ling V, Zielinski RE: Molecular cloning of cDNA sequences encoding the calcium-binding protein, calmodulin, from barley. Plant Physiol 90: 714–719 (1989).

    Google Scholar 

  27. Ling V, Perera IY, Zielinski RE: Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol 96: 1196–1202 (1991).

    Google Scholar 

  28. Lowe T, Sharefkin J, Yang SH, Dieffenbach CW: A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucl Acids Res 18: 1757–1761 (1990).

    PubMed  Google Scholar 

  29. Lukas TJ, Iverson DB, Schleicher M, Watterson DM: Structural characterization of a higher plant calmodulin: Spinacia oleracea. Plant Physiol 75: 788–795 (1984).

    Google Scholar 

  30. Luthe D, Quatrano R: Transcription in isolated nuclei. Plant Physiol 65: 305–308 (1980).

    Google Scholar 

  31. Maniatis T, Fritsch E, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  32. Martino-Catt S, Ort DR: Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci USA 89, in press (1992).

  33. Mount SM: A catalogue of splice junction sequences. Nucl Acids Res 10: 459–469 (1982).

    PubMed  Google Scholar 

  34. Nojima H: Structural organization of multiple rat calmodulin genes. J Mol Biol 208: 269–282 (1989).

    PubMed  Google Scholar 

  35. Nojima H, Sokabe H: Structure of a gene for rat calmodulin. J Mol Biol 193: 439–445 (1987).

    Article  PubMed  Google Scholar 

  36. Pelham HRB: A regulatory upstream promoter element in the Drosophila Hsp70 heat-shock gene. Cell 30: 517–528 (1982).

    Article  PubMed  Google Scholar 

  37. Pelham HRB, Bienz M: A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J 1: 1473–1477 (1982).

    PubMed  Google Scholar 

  38. Rasmussen CD, Means RL, Lu KP, May GS, Means AR: Characterization and expression of the unique calmodulin gene of Aspergillus nidulans. J Biol Chem 265: 13767–13775 (1990).

    PubMed  Google Scholar 

  39. Roberts DM, Lukas TJ, Watterson DM: Structure, function and mechanism of action of calmodulin. CRC Crit Rev Plant Sci 4: 311–339 (1986).

    Google Scholar 

  40. Roesler WJ, Vandenbark GR, Hanson RW: Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066 (1988).

    PubMed  Google Scholar 

  41. Rundle SJ, Zielinski RE: Alterations in barley ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination. J Biol Chem 266: 14802–14807 (1991).

    PubMed  Google Scholar 

  42. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  43. Sengupta B, Friedberg F, Detera-Wadleigh SD: Molecular analysis of human and rat calmodulin complementary DNA clones. Evidence for additional active species in these genes. J Biol Chem 262: 16663–16670 (1987).

    PubMed  Google Scholar 

  44. Smith VL, Doyle KE, Maune JF, Munjaal RP, Beckingham K: Structure and sequence of the Drosophila melanogaster calmodulin gene. J Mol Biol 196: 471–485 (1987).

    PubMed  Google Scholar 

  45. VanEldik LJ, Zendegui JG, Marshak DR, Watterson DM: Calcium-binding proteins and the molecular basis of calcium action. Int Rev Cytol 77: 1–61 (1982).

    PubMed  Google Scholar 

  46. Walling L, Drews GN, Goldberg RB: Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci USA 83: 2123–2127 (1986).

    Google Scholar 

  47. Werneke JM, Ogren WL: Structure of an Arabidopsis cDNA encoding rubisco activase. Nucl Acids Res 17: 2871 (1989).

    PubMed  Google Scholar 

  48. Zielinski RE: Calmodulin mRNA in barley (Hordeum vulgare L). Plant Physiol 84: 937–943 (1987).

    Google Scholar 

  49. Zimmer We, Schloss JA, Silflow CD, Youngblom J, Watterson DM: Structural organization, DNA sequence and expression of the calmodulin gene. J Biol Chem 263: 19370–19383 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perera, I.Y., Zielinski, R.E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol 19, 649–664 (1992). https://doi.org/10.1007/BF00026791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026791

Key words

Navigation