Skip to main content
Log in

Colonization and succession of submerged macrophytes in shallow Lake Væng during the first five years following fish manipulation

  • Macrophytes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Colonization of submerged macrophytes and changes in species composition were studied in shallow Lake Væng during the first five years (1987–91) following fish manipulation in 1986–1988 and a resultant significant improvement in lake water transparency. No submerged macrophytes were present in the lake from 1981–1986, during which time the summer mean Secchi depth ranged from 0.6 and 0.8 m. From 1987 to 1990, Secchi depth increased from 0.9 m to 1.8 m and macrophyte coverage consequently increased (1 % of the lake area in 1987, 2% in 1988, 50% in 1989, 80% in 1990 and 90% in 1991). At the same time, the macrophytes became taller, and the weedbeds more dense. The macrophytes colonized from the exposed and deeper part of the lake towards the sheltered and more shallow part of the lake, a colonization pattern that was confirmed by transplantation experiments. The delay in colonization of the shallow parts may be caused by waterfowl grazing. The vegetation was initially dominated by Potamogeton crispus L., but there was a gradual change during 1988–1989 and Elodea canadensis Michx became exclusively dominant in 1990–1991.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barko, J. W. & R. M. Smart, 1986. Sediment related mechanisms and growth limitations in submersed macrophytes. Ecology 67: 1328–1340.

    Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi depth. Can. J. Fish. aquat. Sci. 42: 701–709.

    Google Scholar 

  • Chambers, P. A. & E. E. Prepas, 1988. Underwater spectral attenuation and its effect on the maximum depth of angiosperm colonization. Can. J. Fish. aquat. Sci. 45: 1010–1016.

    Google Scholar 

  • Chambers, P. A., D. H. N. Spence & D. C. Weeks, 1985. Photocontrol of turion formation by P. crispus in the laboratory and natural water. New. Phytologist 99: 183–194.

    Google Scholar 

  • Danell, K. & K. Sjøberg, 1982. Successional patterns of plants, invertebrates and ducks in a man-made lake. J. appl. Ecol. 19: 395–409.

    Google Scholar 

  • Dobrev, P. K. & H. Kocev, 1983. Higher water vegetation formation in water basins originating post extraction of inert materials along the river Iskar, Sofia district. Fitologiya 23: 45–62.

    Google Scholar 

  • Duarte, C. M. & J. Kalff, 1990. Biomass density and the relationship between submerged macrophyte biomass and growth form. Hydrobiologia 196: 17–23.

    Google Scholar 

  • Ekzertzen, V., 1979. Life in the shore-zones of the Volga reservoirs. Higher aquatic vegetation. In Mordukhai-Boltovskoi, P. (ed.), The river Volga and its life, Hague-Boston-London: 271–294.

  • Hongve, D., 1973. Vasspest (Elodea canadensis Michx) i Jevnaker. Blyttia 31: 17–18.

    Google Scholar 

  • Hunt, G. & R. W. Lutz, 1959. Seed production by curlyleaved pondweed and its significance to waterfowl. J. Wildl. Mgmt 23: 405–408.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Muller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross analysis of three Danish case studies. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 205–218.

    Google Scholar 

  • Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in phosphorus loading of shallow, eutrophic Danish lakes: Duration, governing factors and methods for overcoming resilience. Mem. Ist. ital. Idrobiol. 48: 127–148.

    Google Scholar 

  • Johnstone, I. M. & P. W. Robinson, 1987. Light level variation in Lake Tutira (New Zealand) after transient sediment inflow and its effect on the submerged macrophytes. New Zealand J. mar. Freshwat. Res. 21: 47–54.

    Google Scholar 

  • Keddy, P. A., 1983. Shoreline vegetation in Axe Lake, Ontario: effect of exposure. Ecology 64: 331–344.

    Google Scholar 

  • Krahulec, F., J. Lepsl & O. Rauch, 1987. Vegetation succession on a new lowland reservoir. Arch. Hydrobiol. Beih. Ergebn. Limnol. 27: 83–93.

    Google Scholar 

  • Krzyzanek, E., H. Kasza, W. Krzanowski, T. Kuflikowski & G. Pajak, 1986. Succession of communities in the Goczalkowice Dam Reservoir in the period 1955–1982. Arch. Hydrobiol. 106: 21–43.

    Google Scholar 

  • Kuflikowski, T., 1986. Development and structure of the Goczalkowice Reservoir ecosystem X. Macrophytes. Ekol. Pol. 34: 429–445.

    Google Scholar 

  • Kunii, H., 1982. Lifecycle and growth of P. crispus in a shallow pond Ojaga-ike. Botanic Magazine Tokyo 95: 109–124.

    Google Scholar 

  • Lauridsen, T. L., E. Jeppesen, F. Ø. Andersen, submitted. Colonization of submerged macrophytes in shallow fish-manipulated Lake Væng: Impact of sediment composition and waterfowl grazing. Aquat. Bot.

  • Lillie, R. A., 1990. A quantitative survey of the submersed macrophytes in Devil's Lake, Sauk County, with a historical review of the Eurasian Watermilfoil, Myriophyllum spicatum L. Trans. Wis. Acad. Sci. Arts. Lett. 78: 1–20.

    Google Scholar 

  • Malicky, G., 1984. Long term and short term vegetation changes in the northeast bay of the Lunzer Untersee. Hydrobiologia 101: 221–230.

    Google Scholar 

  • McAtee, W. L., 1939. Wildfowl food plants, their value, propagation, and management. Collegiate press, Inc. Ames, Iowa, 141 pp.

    Google Scholar 

  • Meijer, M. L., M. W. deHaan, A. W. Breukelaar & H. Beuiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 303–315.

    Google Scholar 

  • Meijer, M. L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong, B. A. Eaafeng & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275–276/Dev. Hydrobiol. 94: 457–466.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 367–377.

    Google Scholar 

  • Moss, B., H. Balls, K. Irvine * J. Stansfield, 1986. Restoration of two lowland lakes by isolation of nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.

    Google Scholar 

  • Nichols, S. A. & B. H. Shaw, 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 131: 3–21.

    Google Scholar 

  • Olofsson, L., 1991. Retablering af undervandsvegetation i Stigsholm Sø. M.Sc.-thesis from National Environmental Research Institute, and Botanical Institute, University of Aarhus, (in Danish) 85 pp.

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 399–407.

    Google Scholar 

  • Prejs, A., 1984. Herbivory by temperate freshwater fishes and its consequences. Envir. Biol. Fish 10: 281–296.

    Google Scholar 

  • Rogers, R. H. & C. M. Breen, 1980. Growth and reproduction of P. crispus in a South African lake. J. Ecol. 68: 561–571.

    Google Scholar 

  • Rørslett, B., 1977. Spredning av Vasspest (Elodea canadensis Michx) på Østlandet fram til 1977. Blyttia 35: 61–66.

    Google Scholar 

  • Rørslett, B., D. Berge & S. W. Johansen, 1985. Mass invasion of Elodea canadensis in a mesotrophic, South Norwegian lake — impact on water quality. Verh. int. Ver. Limnol. 22: 2920–2926.

    Google Scholar 

  • Rørslett, B. & B. Berge, 1986. Elodea canadensis in Norway in the 1980. Blyttia 44: 119–125.

    Google Scholar 

  • Sastroutomo, S. S., I. Ikusima, M. Numata & S. Ilzumi, 1979. The importance of turions in the propagation of pondweed. Ecol. Revue 19: 2.

    Google Scholar 

  • Scheffer, M., 1989. Alternative stable states eutrophic shallow freshwater systems: a minimal model. Hydrobiol. Bull. 23: 73–89.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 475–486.

    Google Scholar 

  • Sculthorpe, C. D., 1985. The biology of aquatic vascular plants. Edward Arnold (Publishers) Ltd. London, 610 pp.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. ecol. Res. 12: 37–125.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 229–240.

    Google Scholar 

  • von Büsser, P. & P.-A. Tschumi, 1987. Nahrungsökologie der Rotaugen (Ritulus rutilus) im Litoral und and Pelagial des Bielersees. Schweiz. Z. Hydrol. 49: 62–74.

    Google Scholar 

  • Ward, J. C., J. M. Talbot & I. D. Stewart, 1987. Aboveground biomass and productivity of submerged macrophytes in Lake Alexandrina, New Zealand. N. Zeal. J. mar. Freshwat. Res. 21: 215–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauridsen, T.L., Jeppesen, E. & Søndergaard, M. Colonization and succession of submerged macrophytes in shallow Lake Væng during the first five years following fish manipulation. Hydrobiologia 275, 233–242 (1994). https://doi.org/10.1007/BF00026714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026714

Key words

Navigation