Skip to main content
Log in

Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England)

  • Ecosytem Level, Top-Down Control
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Top-down control of phytoplankton by zooplankton is possible through reductions in density of zooplanktivorous fish. Little Mere is a shallow lake where the effects of sewage effluent caused such a reduction. This allowed the large-bodied cladoceran, Daphnia magna Straus, to develop huge populations, preventing potentially large algal crops from developing.

Subsequent diversion of the effluent is anticipated to lead to recovery of the fish community, reduced numbers of large-bodied grazers, and increased phytoplankton biomass. Whether the aquatic plant community, present in Little Mere, is resilient to such changes may depend upon whether cyanophytes are favoured, or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygiereg, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Brendelberger, H., 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol. Oceanogr. 36: 884–894.

    Google Scholar 

  • Briand, F. & E. McCauley, 1978. Cybernetic mechanisms in lake plankton systems: how to control undesirable algae. Nature 273: 228–230.

    Google Scholar 

  • Brylinsky, M. & K. H. Mann, 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18: 1–14.

    Google Scholar 

  • Burns, C. W., 1968. The relationship between body size of filterfeeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13: 675–678.

    Google Scholar 

  • Carvalho, G. R., 1984. Haemoglobin synthesis in Daphnia magna Straus (Crustacea: Cladocera): ecological differentiation between neighbouring populations. Freshwat. Biol. 14: 501–506.

    Google Scholar 

  • Chaney, A. L. & E. P. Morbach, 1962. Modified reagents for the determination of urea and ammonia. Clin. Chem. 8: 130–132.

    Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200–201: 43–47.

    Google Scholar 

  • De Bernardi, R. & G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 29–41.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Fryer, G., 1957. The food of some freshwater cyclopoid copepods and its ecological significance. J. anim. Ecol. 26: 263–286.

    Google Scholar 

  • Gannon, J. E. & S. A. Gannon, 1975. Observations on the narcotization of crustacean zooplankton. Crustaceana 28: 220–224.

    Google Scholar 

  • Geller, W. & H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    Google Scholar 

  • Grimm, M. P., 1989. Northern pike (Esox lucius L.) and aquatic vegetation, tools in the management of fisheries and water quality in shallow waters. Hydrobiol. Bull. 23: 59–65.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology, 2. J. Wiley & Sons, N.Y., 1115 pp.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 205–218.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, O. Sortkjær, E. Mortensen & P. Kristensen, 1990b. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbyg»rd, Denmark. Hydrobiologia 191/Dev. Hydrobiol. 53: 149–164.

    Google Scholar 

  • Kerfoot, W. C., 1980. Commentary: transparency, body size, and prey conspicuousness. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 609–617.

    Google Scholar 

  • King, D. L., 1970. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.

    Google Scholar 

  • Lammens, E. H. R. R., 1988. Trophic interactions in the hypertrophic Lake Tjeukemeer: top-down and bottom-up effects in relation to hydrobiology, predation and bioturbation during the period 1974–1985. Limnologica (Berlin) 19: 81–85.

    Google Scholar 

  • Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic lake. Int. Revue ges. Hydrobiol. 65: 223–247.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  • Lynch, M., 1980. Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 299–304.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: some methods for limnologists. Freshwater Biological Association Scientific Publication No. 36, 120 pp.

  • McQueen, D. J., 1990. Manipulating lake community structure: where do we go from here? Freshwat. Biol. 23: 613–620.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147–201.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 367–377.

    Google Scholar 

  • Nadin-Hurley, C. M. & A. Duncan, 1976. A comparison of daphnid gut particles with the sestonic particles present in two Thames Valley reservoirs throughout 1970 and 1971. Freshwat. Biol. 6: 109–123.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Google Scholar 

  • Porter, K. G. & J. D. Orcutt, Jr, 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.);Lond.: 268–281.

    Google Scholar 

  • Raven, J. A., 1985. The CO2 concentrating mechanism. In W. J. Lucas & J. A. Berry (eds), Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. Am. Soc. Pl. Physiologists. Waverley Press, Baltimore: 67–82.

    Google Scholar 

  • Rebsdorf, A., 1972. The Carbon Dioxide System in Freshwater. A set of tables for easy computation of total carbon dioxide and other components of the carbon dioxide system. Freshwater Biological Laboratory, Hillerød, Denmark.

    Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Annual Report of the Freshwater Biological Association 50: 60–75.

    Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.

    Google Scholar 

  • Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypertrophic lake. Oikos 42: 291–302.

    Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by bluegreens: The case for the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Sprent, J. I., 1987. The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge, 151 pp.

    Google Scholar 

  • Talling, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1 9X4. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.

  • Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.

    Google Scholar 

  • Vollenweider, R. A. (ed.), 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific, Oxford, 213 pp.

    Google Scholar 

  • Watson, R. A. & P. L. Osborne, 1979. An algal pigment ratio as an indicator of the nitrogen supply to phytoplankton in three Norfolk Broads. Freshwat. Biol. 9: 585–594.

    Google Scholar 

  • Zaret, T. M., 1969. Predation-balanced polymorphism of Ceriodaphnia cornuta Sars. Limnol. Oceanogr. 14: 301–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, L. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England). Hydrobiologia 275, 53–63 (1994). https://doi.org/10.1007/BF00026699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026699

Key words

Navigation