Skip to main content
Log in

A microcosm study of nitrogen utilization in the Great Salt Lake, Utah

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microcosms were used to study the effects of two inorganic nitrogen sources (ammonia and nitrate) and two organic nitrogen sources (urea and glutamic acid) on the growth of algae and bacteria found in the Great Salt Lake, Utah. Ammonia, nitrate and urea stimulated bacterial growth indirectly through increased algal production of unknown organic substances. Glutamic acid, representing readily available organic carbon and nitrogen, stimulated the bacteria directly. No nitrification was observed in the microcosms although nitrite was found when the microcosms were supplemented with nitrate. Lake sediment contained a number of anaerobic bacteria producing hydrogen sulfide, methane and other gases. Production of these gases was stimulated in the columns with high algal and bacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1980. Standard methods for examination of water and wastewater. 15th ed., Amer. Public Health Assoc., Washington, D.C. 1134 pp.

    Google Scholar 

  • Burdyl, P. & F. J. Post, 1979. Survival of Escherichia coli in Great Salt Lake water. Water Air Soil Pollut. 12: 237–246.

    Google Scholar 

  • Copeland, B. J., 1967. Environmental characteristics of hypersaline lagoons. U. Texas Contrib. Mar. Sci. 12: 207–218.

    Google Scholar 

  • Davies, C. W., 1962. Ion association. Butterworth Ltd, London, 190 pp.

    Google Scholar 

  • Hahn, J. & P. Haug, 1985. Sedimentary record and archaebacteria. In C. R. Woese & R. S. Wolfe (eds), The bacteria Vol. VIII: Archaebacteria. Academic Press, NY.: 215–253.

    Google Scholar 

  • Hof, T., 1935. Investigations concerning bacterial life in strong brines. Extr. Rec. Trav. Botan. Neerland 32: 92–173.

    Google Scholar 

  • Jones, C. T., C. G. Clyde, W. J. Grenney & J. P. Riley, 1976. Development of a water quality simulation model applicable to Great Salt Lake, Utah. Utah Water Research Laboratory, Publication No. PRJEW016–1, Utah State University, Logan, Utah, 129 pp.

    Google Scholar 

  • Kaufman, D. W. (ed.), 1960. Sodium chloride — the production and properties of salt and brine. ACS Monograph Series, Reinhold Publishing Co., New York, 743 pp.

    Google Scholar 

  • Krumgalz, B., 1980. Salt effects on the pH of hypersaline solutions. In A. Nissenbaum (ed.), Hypersaline brines and evaporitic environments. Developments in Sedimentology 28, Elsevier Scientific Pub. Co., Amsterdam: 73–83.

    Google Scholar 

  • Kushner, D. J., 1978. Life in high salt and solute concentrations: Halophilic bacteria. In D. C. Ellwood, J. N. Hedger, M. J. Latham, J. H. Slater & J. M. Lynch (eds), Contemporary microbial ecology. Academic Press, p. 29–54.

  • Lupton, F. S., T. J. Phelps & J. G. Zeikus, 1984. Methanogenesis, sulphate reduction and hydrogen metabolism in hypersaline anoxic sediments of the Great Salt Lake, Utah. In Annual Report-1983, Baas Becking Geobiological Laboratory, Bureau of Mineral Resources, Canberra, Australia: 42–48.

    Google Scholar 

  • May, S. O., 1978. The effect of various environmental factors on the growth of a red pigmented Dunaliella species from the Great Salt Lake, Utah. M.Sc. Thesis, Utah State University, Logan, Utah.

    Google Scholar 

  • Mitchell, J. G., A. Okubo & J. A. Fuhrman, 1985. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316: 58–59.

    Google Scholar 

  • Nalewajko, C., K. Lee & P. Fay, 1980. Significance of algal extracellular products to bacteria in lakes and cultures. Microb. Ecol. 6: 199–207.

    Google Scholar 

  • Nelson, J. E., 1975. Specific ions made easy. Amer. Lab. 7: 73–78.

    Google Scholar 

  • Paterek, J. R. & P. H. Smith, 1983. Isolation of a halophilic methanogenic bacterium from the sediments of Great Salt Lake and a San Francisco Bay saltern. Am. Soc. Microbiol., Abstr. Annu. Meet. p. 140.

  • Porcella, D. B. & J. A. Holman, 1972. Nutrients, algal growth, and cultures of brine shrimp in the southern Great Salt Lake. In J. P. Riley (ed.), The Great Salt Lake and Utah's Water Resources. Utah Water Research Laboratory, Logan, Utah. p. 142–155.

    Google Scholar 

  • Porcella, D. B., J. S. Kumagai & E. J. Middlebrooks, 1970. Biological effects on sediment-water nutrient interchange. J. Sanit. Eng. Div. ASCE 96: 911–926.

    Google Scholar 

  • Post, F. J., 1977. The microbial ecology of the Great Salt Lake. Microb. Ecol. 3: 143–165.

    Google Scholar 

  • Post, F. J., 1980a. Biology of the north arm. In H. W. Gwynn (ed.), Great Salt Lake: A scientific, historical and economic overview. Bull. 116 Utah Geographical and Mineralogical Survey. Utah Dept. of Natural Resources, Salt Lake City, Utah: 313–321.

    Google Scholar 

  • Post, F. J., 1980b. Oxygen-rich gas domes of microbial origin in the salt crust of the Great Salt Lake, Utah. Geomicrobiol. J. 2: 127–139.

    Google Scholar 

  • Post, F. J., 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81: 59–69.

    Google Scholar 

  • Post, F. J., L. J. Borowitzka, M. A. Borowitzka, B. Mackay & T. Moulton, 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105: 95–113.

    Google Scholar 

  • Samoilov, I. V., 1965. Structure of aqueous electrolyte solution and the hydration of ions. Consultants Bureau, N.Y.: 141–148.

    Google Scholar 

  • Solórzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Spencer, R. J., M. J. Baedecker, H. P. Eugster, R. M. Forester, M. B. Goldhaber, B. F. Jones, K. Kelts, J. Mckenzie, D. B. Madsen, S. L. Rettig, M. Rubin & C. J. Bowser, 1984. Great Salt Lake, and precursors, Utah: the last 30000 years. Contrib. Mineral. Petrol. 86: 321–334.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, B. F. Jones & S. L. Ettig, 1985. Geochemistry of Great Salt Lake, Utah. I: Hydrochemistry since 1850. Geochim. Cosmochim. Acta 49: 727–737.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin No. 167, 2nd ed., Fisheries Research Board of Canada. 311 p.

  • Sturm, P. A., 1980. The Great Salt Lake brine system. In H. W. Gwynn (ed.), Great Salt Lake: A scientific, historical and economic overview. Bull. 116 Utah Geological and Mineralogical Survey. Utah Dept. of Natural Resources, Salt Lake City, Utah: 147–162.

    Google Scholar 

  • Sturm, P. A., J. C. McLaughlin & R. Broadhead, 1980. Analytical procedures for Great Salt Lake brine. In H. W. Gwynn (ed.), Great Salt Lake: A scientific, historical and economic overview. Bull. 116 Utah Geological and Mineralogical Survey. Utah Dept. of Natural Resources, Salt Lake City, Utah: 175–193

    Google Scholar 

  • Walker, K. F., W. D. Williams & U. T. Hammer, 1970. The Miller method for oxygen determination applied to saline lakes. Limnol. Oceanogr. 15: 814- 815.

    Google Scholar 

  • Ward, D. M. & T. D. Brock, 1978. Hydrocarbon biodegradation in hypersaline environments. Appl. Environ. Microbiol. 35: 353–359.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders, Co., Philadelphia. p. 344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Post, F.J., Stube, J.C. A microcosm study of nitrogen utilization in the Great Salt Lake, Utah. Hydrobiologia 158, 89–100 (1988). https://doi.org/10.1007/BF00026268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026268

Key words

Navigation