Skip to main content
Log in

Sulfte-reduction process in sediments of Lake Kinneret, Israel

  • Microbial processes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Monomictic Lake Kinneret is stratified during summer and autumn, resulting in a hypolimnion rich in H2S (3–7 mg 1−1). In winter and spring every year a bloom of dinoflagallate Peridinium gatunense produces an average biomass of 150000 ton wet weight. Part of this biomass sinks to the hypolimnion and sediments where it is decomposed and mineralized, with some of the mineralization due to the activity of sulfate-reducing bacteria (SRB). The sulfate-reduction potential of the upper sediment layer at the deepest part of the lake (42 m) was measured. The activity of the enzyme arylsulfatase was also monitored. Rates of sulfate-reduction ranged from a minimum of 12 nmoles SOf4 p2−-reduced cm−3 day−1 in December before lake overturn to a maximum of 1673 nmoles SOf4 p2− reduced cm−3 day−1 in July during stratification. These rates are considerably higher than those recorded from other freshwater lakes in the world and are probably limited more by the availability of organic matter than by sulfate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1985. Standard Methods for examination of water and wastewater (16th edition). American Public Health Association, Washington, D.C.

    Google Scholar 

  • Berman, T. & U. Pollingher, 1974. Annual and seasonal variations of phytoplankton, chlorophyll and photosynthesis in Lake Kinneret. Limnol. Oceanogr. 19: 31–54.

    Google Scholar 

  • Canfield, D. E., 1989. Sulphate reduction and oxic respiration in marine sediments. Implications for organic carbon preservation in anoxic environments. Deep Sea Res. 36: 121–138.

    Google Scholar 

  • Capone, D. G. & R. P. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. Limnol. Oceanogr. 33: 725–749.

    Google Scholar 

  • Cooper, P. J. M., 1972. Arylsulfatase activity in northern Nigerian soils. Soil Biol. Biochem. 4: 333–337.

    Google Scholar 

  • Dunnette, D. A., 1989. Origin of hydrogen sulfide in freshwater sediments in biogenic sulfur in the environment. ACS Symposium Series, 393: 72–78.

    Google Scholar 

  • Hordijk, K. A., C. P. M. Hagenaars & T. E. Cappenberg, 1985. Kinetic studies of bacterial sulfate-reduction in freshwater sediments by high pressure liquid chromatography and microdistillation. Appl. envir. Microbiol. 49: 434–440.

    Google Scholar 

  • Ingvorsen, K. & B. B. Jorgensen, 1984. Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch. Microbiol. 132: 61–66.

    Google Scholar 

  • Ingvorsen, K., J. G. Zeikus & T. D. Brock, 1981. Dynamics of bacterial sulfate-reduction in a eutrophic lake. Appl. envir. Microbiol. 42: 1029–1036.

    Google Scholar 

  • Jarvis, B. W. & G. E. Lang, 1987. Arylsulfatase activity in peat exposed to acid precipitation. Soil Biol. Biochem. 19: 107–109.

    Google Scholar 

  • Jorgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–832.

    Google Scholar 

  • Jorgensen, B. B., 1978. A comparison of methods for the quantification of bacterial sulfate-reduction in coastal marine sediments. Geomicrobiol. J. 1: 11–27.

    Google Scholar 

  • King, G. M., 1988. Patterns of sulfate-reduction and the sulfur cycle in a South Carolina salt marsh. Limnol. Oceanogr. 33: 376–390.

    Google Scholar 

  • King, G. M. & M. J. Klug, 1980. Sulphydrolase activity in sediments of Wintergreen Lake, Kalamazo County, Michigan. Appl. envir. Microbiol. 39: 950–956.

    Google Scholar 

  • King, G. M. & M. J. Klug, 1982. Comparative aspects 35SOf4 p2− of sulfur mineralization in sediments of eutrophic lake basin. Appl. envir. Microbiol. 43: 1406–1412.

    Google Scholar 

  • Landers, D. H. & M. J. Mitchell, 1988. Incorporation of 35SOf4 p2− into sediments of three New York lakes. Hydrobiol. 160: 85–95.

    Google Scholar 

  • Mazor, B., 1978. Mineral waters of the Kinneret Basin and possible origin. In: C. Serruya (ed.), Lake Kinneret Monographiae. Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Serruya, C. (ed.), 1978. Lake Kinneret Monographiae. Dr W. Junk Publishers, The Hague. 502 pp.

    Google Scholar 

  • Serruya, C., 1980. Chemical processes. In: Limnological Processes in Lake Kinneret During 1969–1979. Summary Report (in Hebrew), 7–17.

  • Serruya, C., M. Edelstein, U. Pollingher & S. Serruya, 1974. Lake Kinneret sediments: Nutrient composition of the pore water and mud water exchanges. Limnol. Oceanogr. 19: 489–508.

    Google Scholar 

  • Skyring. G. W., 1987. Sulphate reduction in coastal ecosystems. Geomicrobiol. J. 5: 295–374.

    Google Scholar 

  • Smith, R. L. & M.J. Klug, 1981a. Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl. envir. Microbiol. 41: 1230–1237.

    Google Scholar 

  • Smith, R. L. & M. J. Klug, 1981b. Electron donors utilized by sulfate reducing bacteria in eutrophic lake sediments. Appl. envir. Microbiol. 42: 116–121.

    Google Scholar 

  • Staudinger, B., 1989. Seasonal variation of the phosphorus mobility in the porewater of sediments of Lake Kinneret. MSc thesis, University of Bayreuth, Germany.

    Google Scholar 

  • Stiller, M., 1974. Rates of transport and sedimentation in Lake Kinneret. Ph.D. thesis, Feinberg Graduate School, The Weiman Institute, 1974. 240 pp.

  • Tabatabai, N. A. & J. A. Bremner, 1970. Arylsulfatase activity in soils. Soil Sci. Soc. Amer. Proc. 34: 225–229.

    Google Scholar 

  • Tessenow, U., T. Frevert, W. Hofgastner & A. Moser, 1977. Ein simultan schliesender serienwasserschopfer fur sedimentkontaktwasser mit fotoelktrischer selbstauslosung und fakultativem sedimentstecher. Arch. Hydrobiol. suppl. 48: 438–452.

    Google Scholar 

  • Westerman, B. S. & B. K. Ahring, 1987. Dynamics of methane production, sulfate-reduction and dentifrification in a permanently waterlogged Alder swamp. Appl. envir. Microbial. 53: 2554–2559.

    Google Scholar 

  • Westrich, J. T. & R. A. Berner, 1984. The role of sedimentary organic matter in bacterial sulfate-reduction: the G model tested. Limnol. Oceanogr. 29: 236–249.

    Google Scholar 

  • Westrich, J. T. & R. A. Berner, 1988. The effect of temperature on rates of sulfate-reduction in marine sediments. Geomicrobiol. J. 6: 99–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadas, O., Pinkas, R. Sulfte-reduction process in sediments of Lake Kinneret, Israel. Hydrobiologia 235, 295–301 (1992). https://doi.org/10.1007/BF00026221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026221

Key words

Navigation