Skip to main content
Log in

A comparison of phototrophic bacteria in two adjacent saline meromictic lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Two adjacent saline, meromictic lakes in Saskatchewan host different populations of phototrophic bacteria. Deadmoose Lake hosts a population of Lamprocystis roseopersicina (Chromatiaceae) while in Waldsea Lake a population of a Chlorobium species (Chlorobiaceae) is dominant. Differences in light quantity, light quality, temperature, pH and Lamprocystis' capacity for photoorganoheterotrophic growth explain why different genera of phototrophic bacteria are found within the two lakes. These phototrophic bacteria make a significant contribution to total photosynthetic productivity, fixing 14.3 and 32 g C m-2 year -1 in Deadmoose and Waldsea Lake respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gorlenko, V. M., Chebotarev, E. N. & Kachalkin, V. I., 1974. Microbial oxidation of hydrogen sulfide in Lake Veisovo (Slavyansk Lake). Microbiology 43: 450–453.

    Google Scholar 

  • Hammer, U. T., 1978. The saline lakes of Saskatchewan. 3. Chemical characterization. Int. Revue ges. Hydrobiol. 63: 311–335.

    Google Scholar 

  • Hammer, U. T., 1980. Primary production. 5. 10. Geographical variations. In: LeCren, D. L. & Lowe-McConnel, R. H. (eds), International Biological Programme 22: The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge: 235–246.

    Google Scholar 

  • Hammer, U. T. & Haynes, R. D., 1978. The saline lakes of Saskatchewan. 2. Locale, hydrography and other physical aspects. Int. Revue ges. Hydrobiol. 63: 179–203.

    Google Scholar 

  • Hammer, U. T., Haynes, R. C., Heseltine, J. M. & Swanson, S. M., 1975. The saline lakes of Saskatchewan. Verh. int. Ver. Limnol. 19: 589–598.

    Google Scholar 

  • Haynes, R. C. & Hammer, U. T., 1978. The saline lakes of Saskatchewan. 4. Primary production of phytoplankton in selected saline ecosystems. Int. Revue ges. Hydrobiol. 63: 337–351.

    Google Scholar 

  • Herbert, R. A. & Tanner, A. C., 1977. The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sedimens. J. appl. Bact. 43: 437–445.

    Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. 1. Geography, physics and chemistry. John Wiley & Sons Inc., N.Y., 1015 pp.

    Google Scholar 

  • Ingvorsen, K. & Jorgensen, B., 1979. Combined measurement of oxygen and sulfide in water samples. Limnol. Oceanogr. 24: 390–393.

    Google Scholar 

  • Kämpf, C. & Pfennig, N., 1980. Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violaceae and Chromatium vinosum. Arch. Microbiol. 127: 125–135.

    Google Scholar 

  • Kondrat'eva, E. N., 1965. Photosynthetic bacteria. Israel Program Sci. Transl., Jerusalem, 243 pp.

  • Lawrence, J. R., 1978. Factors influencing the contribution of Chlorobiaceae to primary production in a saline meromictic lake. M.Sc. Thesis, Univ. Saskatchewan, Saskatoon, 103 pp.

    Google Scholar 

  • Lawrence, J. R., Haynes, R. C. & Hammer, U. T., 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Northcote, T. G. & Halsey, T. G., 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish. Res. Bd Can. 26: 1763–1787.

    Google Scholar 

  • Osnitskaya, L. K. & Chudina, V. I., 1977. Photosynthetic growth of sulfur bacteria during illumination with green light. Mikrobiologiya 46: 44–49 (English Transl.).

    Google Scholar 

  • Parker, R. D., 1980. The ecology and primary production of limnetic phytoplankton, with an emphasis on the Chromatiaceae, in a saline meromictic lake. M.Sc. Thesis, Univ. Saskatchewan, Saskatoon, 134 pp.

    Google Scholar 

  • Parker, R. D. & Hammer, U. T., in press. A study of the Chromatiaceae in a saline meromictic lake in Saskatchewan, Canada. Int. Revue ges. Hydrobiol.

  • Parkin, T. B. & Brock, T. D., 1980. The effects of light quality on the growth of phototrophic bacteria in lakes. Arch. Microbiol. 125: 19–27.

    Google Scholar 

  • Pfennig, N., 1967. Photosynthetic bacteria. Ann. Rev. Microbiol. 21: 285–324.

    Google Scholar 

  • Pfennig, N., 1978. Ch. 1, General physiology and ecology of photosynthetic bacteria. In: Clayton, R. K. & sistrom, W. R. (eds), The Photosynthetic Bacteria. Plenum Press, N.Y.: 1–18.

    Google Scholar 

  • Steemann Nielsen, E., 1952. The use of radioactive carbon for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140.

    Google Scholar 

  • Takahashi, M. & Ichimura, S., 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Takahashi, M. & Ichimura, S., 1970. Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.

    Google Scholar 

  • Wright, R. T. & Hobbie, J. E., 1965. The uptake of organic solutes in lake water. Limnol. Oceanogr. 10: 22–28.

    Google Scholar 

  • Wright, R. T. & Hobbie, J. E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, R.D., Lawrence, J.R. & Hammer, U.T. A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105, 53–61 (1983). https://doi.org/10.1007/BF00025176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025176

Keywords

Navigation