Skip to main content
Log in

Auxin receptors: recent developments

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rapid advances have been made in the study of auxin binding proteins (ABPs) in the last five years. In particular, an ABP in maize membranes has been cloned, sequenced and both monoclonal and polyclonal antibodies to this ABP have been developed. Structural and functional analysis has begun and there is good electrophysiological evidence that ABP in the plasma membrane functions as a receptor, probably involved in auxin-induced cell expansion. The role of the large amount of ABP in the endoplasmic reticulum is less clear, as is the relationship to soluble ABPs. At present there is only some circumstantial evidence relating any ABP to cell division. Receptors for synthetic inhibitors of auxin transport (phytotropins) are also of interest in relation to auxin action, but are less well characterised. Identification of new naturally-occurring phytotropins could lead to novel plant growth regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M and Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc. Natl Acad Sci USA 86: 891–895

    Google Scholar 

  2. Barbier-Brygoo H, Ephritikhine G, Shen WH, Delbarre A, Klämbt D and Guern J (1990) Characterization and modulation of the sensitivity of plant protoplasts to auxin. In: TMKonijn ed. Transducing Pathways: Activation and Desensitisation, 231–244. New York: Springer-Verlag

    Google Scholar 

  3. Barbier-Brygoo H, Guern J, Ephritikhine G, Shen WH, Maurel C and Klämbt D (1990) The sensitivity of plant protoplasts to auxins: Modulation of receptors at the plasmalemma. In: CLamb and RBeachy, eds. Plant Gene Transfer 165–173. New York: Alan R Liss

    Google Scholar 

  4. Barbier-Brygoo H, Maurel C, Shen WH, Ephritikhine G, Delbarre A and Guern J (1990) Use of mutants and transformed plants to study the action of auxins. In: JARoberts, CKirk and MAVenis, eds., Hormone Perception and Signal Transduction in Animals and Plants, 67–77. Cambridge: Company of Biologists

    Google Scholar 

  5. Baron-Epel O, Gharyal PK and Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175: 389–395

    Google Scholar 

  6. Elliott MC, O'Sullivan AM, Hall JF, Robinson GM, Lewis JA, Armitage DA, Bailey HM, Barker RDJ, Libbenga KR and Mennes AM (1987) Plant cell division-the roles of IAA and IAA binding proteins In: JEFox and MJacobs, eds., Molecular Biology of Plant Growth Control, 245–255. New York: Alan R Liss

    Google Scholar 

  7. Ephritikhine G, Barbier-Brygoo H, Muller J-F and Guern J (1987) Auxin effect on the transmembrane potential difference of wild-type and mutant tobacco protoplasts exhibiting a differential sensitivity to auxin. Plant Physiol 84: 801–804

    Google Scholar 

  8. Herber B, Ulbrich B and Jacobsen H-J (1988) Modulation of soluble auxin-binding proteins in soybean cell suspensions. Plant Cell Reports 7: 178–181

    Article  Google Scholar 

  9. Hertel R, Thomson K-St and Russo VEA (1972) In vitro auxin binding to particulate cell fractions from maize coleoptiles. Planta 107: 325–340

    Google Scholar 

  10. Hesse T, Feldwisch J, Balshuseman D, Bauw G, Puype M, Vanderkerchkhove J, Löbler M, Klämbt D, Schell J and Palme K (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8: 2453–2461

    PubMed  Google Scholar 

  11. Heyn A, Hoffmann S and Hertel R (1987) In vitro auxin transport in membrane vesicles from maize coleoptiles. Planta 172: 285–287

    Google Scholar 

  12. Hicks GR, Rayle DL, Jones AM and Lomax TL (1989) Specific photoaffinity labelling of two plasma membrane polypeptides with an azido auxin. Proc Natl Acad Sci USA 86: 4948–4952

    PubMed  Google Scholar 

  13. Hicks GR, Rayle D L and Lomax TL (1989) The diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245: 52–54

    PubMed  Google Scholar 

  14. Inohara N, Shimomura S, Fukui T and Futai M (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete primary structure. Proc Natl Acad USA 86: 3564–3568

    Google Scholar 

  15. Jacobs M and Gilbert SF (1983) Basal localization of presumptive auxin transport carrier in pea stem cells. Science 220: 1297–1300

    Google Scholar 

  16. Jacobs M and Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241: 346–349

    Google Scholar 

  17. Jacobs M and Short TW (1986) Further characterisation of the presumptive auxin transport carrier using monoclonal antibodies In: MBopp ed. Plant Growth Substances 1985, 218–226, Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  18. Jacobs M and Short TW (1987) Preliminary separation of pea stem NPA receptors by high performance ion exchange chromatography In: DKlämbt ed., Plant Hormone Receptors, 93–97. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  19. Jacobsen H-J and Hajek K (1985) Genotype-specific soluble auxin-binding etiolated pea epicotyls. Biol Plant 27: 110–113

    Google Scholar 

  20. Jacobsen H-J, Hajek K, Mayerbacher R and Herber B (1987) Soluble auxin-binding: Is there a correlation between growth-stage dependent high affinity auxin binding and auxin competence? In: DKlämbt, ed. Plant Hormone Receptors, 63–70. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  21. Jones AM, Melhado LL, Ho THD, Pearce CJ and Leonard NJ (1984) Azido auxins: Photoaffinity labelling of auxin-binding proteins in maize coleoptile with tritiated 5-azidoindole-3-acetic acid. Plant Physiol 75: 1111–1116

    Google Scholar 

  22. Jones AM and Venis MA (1989) Photoaffinity labelling of auxin-binding proteins in maize. Proc Natl Acad Sci USA 86: 6153–6156

    Google Scholar 

  23. Jones AM, Lamerson P and Venis MA (1989) Comparison of site I auxin binding and a 22-kilodalton auxin-binding protein in maize. Planta 179: 409–413

    Google Scholar 

  24. Katekar GF (1987) Hormone recognition in plants. In: DKlämbt, ed. Plant Hormone Receptors, 13–26. Berlin, Heidelberg, New York: Springer Verlag

    Google Scholar 

  25. Katekar GF (1987) Interaction of phytotropins with the NPA receptor. Biol Plant 27: 92–97

    Google Scholar 

  26. Katekar GF, Geissler AE, Kennard CHL and Smith G (1987) Recognition of phytotropins by the receptor for 1-N-naphthylphthalamic acid. Phytochem 26: 1257–1267

    Article  Google Scholar 

  27. Katekar GF, Winkler DA and Geissler AE (1987) A conformation study of the topographical requirements of a phytotropin recognition site on the naphthylphthalamic acid receptor. Phytochem 26: 2881–2889

    Article  Google Scholar 

  28. Kaur H and Kapoor HC (1989) A membrane-associated binding site from chickpea (Cicer arietinum L.) epicotyls. Plant Science 65: 135–141

    Article  Google Scholar 

  29. Kikuchi M, Imaseki H and Sakai S (1989) Modulation of gene expression in isolated nuclei by auxin-binding proteins. Plant Cell Physiol. 30: 765–773

    Google Scholar 

  30. Kutschera U, Bergfeld R and Schopfer P (1987) Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta 170: 168–180

    Google Scholar 

  31. Libbenga KR, Maan AC, van der Linde PCG and Mennes AM (1986) Auxin receptors. In: CM Chadwick and DR Garrod eds. Hormones, Receptors and Cellular Interactions in Plants, 1–68. Cambridge University Press

  32. Löbler M and Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterisation. J. Biol Chem 260: 9848–9853

    PubMed  Google Scholar 

  33. Löbler M and Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative auxin receptor. J. Biol Chem 260: 9854–9859

    PubMed  Google Scholar 

  34. Löbler M, Simon K, Hesse T and Klämbt D (1987) Auxin Receptors in Target Tissue. In: JEFox and MJacobs, eds. Molecular Biology of Plant Growth Control, 279–288. New York: Alan R Liss

    Google Scholar 

  35. Lützelschwab M, Asard H, Ingold U and Hertel R (1989) Heterogeneity of auxinaccumulating membrane vesicles from Curcurbita and Zea: A possible reflection of cell polarity. Planta 177; 304–311

    Google Scholar 

  36. Maan AC, van derLinde PCG, Harkes PAA and Libbenga KR (1985) Correlation between the presence of membrane-bound auxin binding and root regeneration in cultured tobacco cells. Planta 164: 376–378

    Google Scholar 

  37. Mennes AM, Nakamura C, van derLinde PCG, van derZaal EJ, vanTelgen HJ, Quint A and Libbenga KR (1987) Cytosolic and membrane-bound high-affinity auxin-binding proteins in tobacco. In: DKlämbt, ed. Plant Hormone Receptors, 51–62. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  38. Mennes AM, Boot CJM, Libbenga KR, van der Zaal EJ and Maan AC (1990) IAA perception and auxin-regulated gene expression. In: SBRood and RPPharis, eds. Plant Growth Substances 1988, 100–105. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  39. Michalke W, Katekar GF and Geissler AE (1991) Phytotropin binding sites and auxin transport: Evidence for two recognition sites. Planta, in press

  40. Munro S and Pelham HRB (1987) A C-terminal signal prevents secretion of lumenal ER proteins. Cell 48: 899–907

    Article  PubMed  Google Scholar 

  41. Nakamura C and Ono H (1988) Solubilisation and characterisation of a membranebound auxin-binding protein from cell suspension cultures of Nicotiana tabacum. Plant Physiol 88: 685–689

    Google Scholar 

  42. Nakamura C, VanTelgen H-J, Mennes AM, Ono H and Libbenga KR (1988) Correlation between auxin resistance and the lack of a membrane-bound auxin-binding protein and a root-specific peroxidase in Nicotiana tabacum. Plant Physiol 88: 845–849

    Google Scholar 

  43. Napier RM, Venis MA, Bolton MA, Butcher GW and Richardson LI (1988) Preparation and characterisation of monoclonal and polyclonal antibodies to the maize membrane auxin-binding protein. Planta 176: 519–526

    Google Scholar 

  44. Napier RM, Venis MA (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein. Planta 182: 313–318

    Article  Google Scholar 

  45. Sabater M and Sabater F (1986) Auxin carriers in membranes of lupin hypocotyls. Planta 167: 76–80

    Google Scholar 

  46. Sakai S, Seki J and Imaseki H (1986) Stimulation of RNA synthesis in isolated nuclei by auxin-binding proteins-I and-II. Plant Cell Physiol 27: 635–643

    Google Scholar 

  47. Sangameswaran L, Fales HM, Friedrick P and DeBlas AL (1986) Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc Natl Acad Sci USA 83: 9236–9240

    PubMed  Google Scholar 

  48. Shen WH, Petit A, Guern J and Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc. Natl Acad Sci USA 85: 3417–3421

    Google Scholar 

  49. Shimomura S, Sotobayashi T, Futai M and Fukui T (1986) Purification and properties of an auxin-binding protein from maize shoot membranes. J. Biochemistry 99: 1513–1524

    Google Scholar 

  50. Shimomura S, Inohara N, Fukui T and Futai M (1988) Different properties of two types of auxin-binding sites in membranes from maize coleoptiles. Planta 175: 558–566

    Google Scholar 

  51. Thompson M, Krull VL and Venis MA (1983) A chemoreceptive bilayer lipid membrane based on an auxin-receptor ATPase electrogenic pump. Biochem. Biophys. Res. Commun. 110: 300–304

    PubMed  Google Scholar 

  52. Tillman U, Viola G, Kayser B, Seimeister G, Hesse T, Palme K, M M and Klämbt D (1989) cDNA clones of the auxin binding protein from corn coleoptiles (Zea mays L.): Isolation and characterisation by immunological methods. EMBO J 8: 2463–2467.

    PubMed  Google Scholar 

  53. Van derZaal EJ, Mennes AM and Libbenga KR (1987) Auxin-induced rapid changes in translatable mRNAs in tobacco cell suspension. Planta 172: 514–519

    Google Scholar 

  54. Venis MA (1985) Hormone-binding Sites in Plants. New York, London: Longman

    Google Scholar 

  55. Venis MA, Napier RM (1990) Antibodies to the maize membrane auxin receptor. In: RRanjeva and AMBoudet, eds. Signal Perception and Transduction in Higher Plants, 13–26, Berlin: Springer-Verlag

    Google Scholar 

  56. Venis MA, Thomas EW, Barbier-Brygoo H, Ephritikhine G and Guern J (1990) Impermeant auxin analogues have auxin activity. Planta 182: 232–235

    Article  Google Scholar 

  57. Voet JG, Howley KS and Shumsky JS (1987) 5′-azido-N-1-naphthylphthalamic acid, a photolabile analogue of N-1-naphthylphthalamic acid. Plant Physiol 85: 22–25

    Google Scholar 

  58. Zaina S, Bertani A, Lambardi L. Mapelli S and Torti G (1989) Membrane-associated binding sites for indoleacetic acid in the rice coleoptile. Planta 179: 222–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venis, M.A., Napier, R.M. Auxin receptors: recent developments. Plant Growth Regul 10, 329–340 (1991). https://doi.org/10.1007/BF00024592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024592

Key words

Navigation