Skip to main content
Log in

Transgenic apples display stable gene expression in the fruit and Mendelian segregation of the transgenes in the R1 progeny

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The transfer of genes via Agrobacterium to a perennial tree crop such as apple, requires monitoring of the stability of the genes in the target tissues such as the fruit and leaves. If the same genes are required for introgression into a conventional breeding programme, their expression also needs to be stable and their inheritance should follow a normal Mendelian pattern. In the following report we show, for the first time, the stable expression and Mendelian segregation of transgenes in a tree species. We have evidence for a 1:1 segregation of the nos and nptII genes among R1 progeny from a transgenic apple parent. In addition, we present evidence for stable gene expression of both nos and the co-transferred gene nptII in the flesh of apple fruit 7 years after the initial transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nos :

nopaline synthase

nptII :

neomycin phosphotransferase

ACC:

1-aminocyclopropane carboxylic acid

PVP:

polyvinylpyrrolidone

PCR:

polymerase chain reaction

EFE:

ethylene forming enzyme

B.t.:

Bacillus thuringiensis

References

  • Bevan M.W., 1984. Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  • Church, R. & R.R. Williams, 1978. Pollination of pome fruits. Report of the Long Ashton Research Station for 1977. pp. 21–22.

  • Dandekar, A.M., G.H. McGranahan, S.L. Uratsu, C. Leslie, P.V. Vail, S. Tebbets, D. Hoffman, J. Driver, P. Viss & D.J. James, 1992. Engineering for apple and walnut resistance to codling moth. In: Brighton Crop Protection Conference-Pests and Diseases, Vol. 2. pp. 741–747.

  • Dellaporta S.L., J. Wood & J.B. Hicks, 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.

    Article  CAS  Google Scholar 

  • Dong J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L. Li, A.B. Bennett & S.F. Yang, 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38–45.

    Article  CAS  Google Scholar 

  • Dong J.G., D. Olson, A. Silverstone & S.F. Yang, 1992. Sequence for a 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Plant Physiol. 98: 1530–1531.

    Article  PubMed  CAS  Google Scholar 

  • Draper J., R. Scott & R. Walden, 1988. Plant Genetic Transformation and Gene Expression — A Laboratory Manual. Blackwell Scientific Publications, Oxford. pp. 355.

    Google Scholar 

  • Edwards J.W. & G.M. Corruzzi, 1990. Cell-specific gene expression in plants. Ann. Rev. Genet. 24: 275–303.

    Article  PubMed  CAS  Google Scholar 

  • Hamill J.D., S. Rounsley, A. Spencer, G. Todd & M.J.C. Rhodes, 1991. The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep. 10: 221–229.

    Article  CAS  Google Scholar 

  • Horsch R.B., J.E. Fry, N.L. Hoffman, D. Eicholtz, S.G. Rogers & R.T. Fraley, 1985. A simple and generalised method of transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • James D.J., A.J. Passey, D.J. Barbara & M.W. Bevan, 1989. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661.

    CAS  Google Scholar 

  • James D.J. & A.M. Dandekar, 1991. Regeneration and transformation of apple (Malus pumila Mill.). Plant Tissue Culture Manual B 8: 1–18.

    CAS  Google Scholar 

  • Nagel R.J., J.M. Manners & R.G. Birch, 1992. Evaluation of an ELISA assay for rapid detection and quantitation of neomycin phosphotransferase II in transgenic plants. Plant Molec. Biol. Rep. 10: 263–272.

    Article  CAS  Google Scholar 

  • Otten L.A.B.M. & R.A. Schilperoort, 1978. A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim. Biophys. Acta 527: 494–500.

    Google Scholar 

  • Picton S., S.L. Barton, M. Bouzayen, A.J. Hamilton & D. Grierson, 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant J. 3: 469–482.

    CAS  Google Scholar 

  • Theologis A., 1992. One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening. Cell 70: 181–184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, D.J., Passey, A.J. & Baker, S.A. Transgenic apples display stable gene expression in the fruit and Mendelian segregation of the transgenes in the R1 progeny. Euphytica 85, 109–112 (1995). https://doi.org/10.1007/BF00023937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023937

Key words

Navigation