Skip to main content
Log in

Polygon of crossability between eleven species of Ipomoea: section Batatas (Convolvulaceae)

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Crossability within Ipomoea section Batatas is complex because of genetic, cytogenetic and physiological interactions. This complexity is responsible for the fact that knowledge about phylogenetic relationships within this section remains preliminary. Between 1988 and 1991, studies of planting, pollination and evaluation of progenies were carried out at the facilities of CIP in La Molina and San Ramon, Peru. Self-compatibility was found in nine diploid species. Self-incompatibility was found in diploid I. trifida, tetraploid I. tiliacea and both tetraploid and hexaploid I. batatas. Sexual compatibility is though to be related to a multiallelic sporophytic incompatibility system which is expressed in the stigmatic papillae. Altogether, 4,162 cross pollinations were made between 11 species and 76 interspecific combinations of 110 possible combinations in a diallel 11×11 design. From these 76 interspecific combinations only 38 survived, and in these crossability (= proportion between number of fruits harvested/pollinations made) ranged from 0.01 to 1.00 at La Molina. At San Ramon, 11 out of 17 cross combinations were successful, and in these crossability ranged from 0.01 to 0.71. Crossability appeared to be influenced by latitude which is related to flowering synchrony. The early death of seedlings is hypothesized to be related to a genomic imbalance between embryo and endosperm. Maternal effects were found in crosses between diploids and tetraploids which produced triploid and diploid offspring, and in crosses between hexaploids and diploids which gave rise to hexaploid offspring. This study shows that I. trifida and I. x leucantha may act as “bridge species” for gene flow from wild Ipomoea species to the genepool of the sweetpotato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbelW.E. & D.F.Austin. 1981. Introgressive hybridization between Ipomoea trichocarpa and Ipomoea lacunosa (Convolvulaceae). Bulletin of the Torrey Botanical Club. Vol. 108(2): 231–239

    Google Scholar 

  • AustinD.F. 1978. The Ipomoea complex-I. Taxonomy. Bulletin of the Torrey Botanical Club 105(2): 114–129.

    Google Scholar 

  • Austin, D.F. 1988a. The Taxonomy Evolution and Genetic Diversity of Sweet Potatoes and Related Wild Species. In: International Potato Center 1988. Exploration, Maintenance, and Utilization of Sweet Potato Genetic Resources, Proc. Planning Conf., Centro Internacional de la Papa, Lima Peru, pp. 27–59.

  • AustinD.F. 1988b. Nomenclatural Changes in the Ipomoea batatas complex (Convolvulaceae). Taxon 37(1): 184, 185.

    Google Scholar 

  • AustinD.F. R.K.Jansson & G.W.Wolfe. 1991. Convolvulaceae and Cylas: a proposed hypothesis on the origins of this plant/insect relationship. Tropical Agriculture (Trinidad) Vol. 68(2): 162–170.

    Google Scholar 

  • BohacJ.R., D.F.Austin & A.Jones. 1993. Discovery of wild tetraploid sweetpotatoes. Economic Botany 47(2): 193–201.

    Google Scholar 

  • Freyre, R.Y. 1989. Produccion de Hexaploides Sinteticos de Ipomoea trifida (H.B.K.) G. Don. Thesis, Ms C. Universidad Nacional Agraria, La Molina, Lima, Peru. pp. 180.

  • Iwanaga, M. 1988. Use of Wild Germplasm for Sweet Potato Breeding. In: International Potato Center 1988. Exploration, Maintenance, Utilization of Sweet Potato Genetic Resources. Proc. Planning Conf. Centro Internacional de la Papa, Lima Peru. pp. 199–210.

  • JonesA. & M.T.Deonier. 1965. Interspecific crosses among Ipomoea lacunosa, I. ramoni, I. trichocarpa, and I. triloba. Botanical Gazette 126(3): 226–232.

    Google Scholar 

  • KobayashiM. & T.Miyazaki. 1976. Sweet Potato Breeding Using Wild Related Species. Proceeding of the Fourth Symposium of the International Society for Tropical Root Crops. CIAT, Cali, Colombia. pp. 53–57.

    Google Scholar 

  • KobayashiR.S., J.C.Bouwkamp & S.L.Sinden. 1994. Interspecific hybrids from cross Incompatible relatives of Sweetpotato. Euphytica 80: 159–164.

    Google Scholar 

  • Kokubu, T. & M. Sato. 1988. Isolation and Culture of Petiole Protoplasts of Sweet Potato, Ipomoea batatas (L.) Lam. and its Related Species. Memoirs of the Faculty of Agriculture Kagoshima University 24: 83–89.

  • Lu, Shu-yun, T. Kokubu & M. Sato. 1987. The Study on Promoting the Crossability between A and B Group in the Batatas Section of Ipomoea. pp. 1–16 (Unpublished).

  • MartinF.W. 1970. Sterility in Some Species Related to the Sweet Potato. Euphytica 19: 459–464.

    Google Scholar 

  • MartinF.W. & A.Jones. 1972. The species of Ipomoea Closely Related to the Sweet Potato. Economic Botany 26(3): 201–215.

    Google Scholar 

  • MartinF.W. & S.Ortiz 1967. Anatomy of the stigma and style of sweet potato. New Phytologist 66, 109–113.

    Google Scholar 

  • McDonaldJ.A. & D.F.Austin. 1990. Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42(2): 116–120.

    Google Scholar 

  • Nishiyama, I. 1982. Autohexaploid Evolution of the Sweet Potato. In: Sweet Potato-Proceedings of the First International Symposium, Asian Vegetable Research and Development Center. R.L. Villareal and T.D. Griggs (ed.). pp. 263–274.

  • NishiyamaI., T.Miyazaki & S.Sakamoto. 1975. Evolutionary Autoploidy in the Sweet Potato [Ipomoea batatas (L.) Lam.] and its Progenitors. Euphytica 24: 197–208.

    Google Scholar 

  • OracionM.Z., K.Niwa & I.Shiotani. 1990. Cytological analysis of tetraploid hybrids between sweet potato and diploid Ipomoea trifida (H.B.K.) Don. Theoretical and Applied Genetics 80: 617–624.

    Google Scholar 

  • Orjeda, M.G. 1990. Desarrollo y Uso de Hibridos Interespecificos entre Ipomoea batatas Lam. (2n=6x=90) e I. trifida (H.B.K.) G. Don. (2n=2x=30) como Probadores de Especies Silvestres Diploides y Tetraploides. Thesis Ms. C. Universidad Nacional Agraria, La Molina, Lima, Peru. pp. 195.

  • ShiotaniI. & T.Kawase. 1987. Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato. Japanese Journal of Breeding 37(4): 367–376.

    Google Scholar 

  • ShiotaniI., S.Yoshida & T.Kawase. 1990. Numerical Taxonomic Analysis and Crossability of Diploid Ipomoea Species Related to the Sweet Potato. Japanese Journal of Breeding 40(2): 159–174.

    Google Scholar 

  • Teramura, T. 1979. Phylogenetic Study of Ipomoea Species in the section Batatas. Memoirs of the College of Agriculture (Kyoto University) (114): 29–48.

  • Xue, Q.H. 1988. Exploration and Utilization of Exotic Ipomoea Wild Germplasm in China. In: Agrobiological Genetics and Physiology Institute, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, The People's Republic of China. Workshop on Sweet Potato Improvement in Asia. Trivandrum, India, October 24–28, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, J., Schmiediche, P. & Austin, D.F. Polygon of crossability between eleven species of Ipomoea: section Batatas (Convolvulaceae). Euphytica 88, 189–200 (1996). https://doi.org/10.1007/BF00023890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023890

Key words

Navigation