Skip to main content
Log in

Transposition pattern of a modified Ds element in tomato

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Several aspects of transposition of an in vitro modified Ds element are described. This Ds element, designated ds-r, is equipped with bacterial plasmid sequences and can, therefore, be rescued from the plant genome. Our results indicate that the Ds-r element has a ‘late’ timing of transposition from T-DNAs. This feature of the element might be advantageous for tagging experiments because it leads to independently transposed germinally transmitted elements. Furthermore, it is shown that Ds-r transposition generates clusters of insertions, indicating that ‘genes to be tagged’ should be located in genomic regions covered by insertions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman J: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).

    Article  PubMed  Google Scholar 

  2. Antequera F, Bird AB: Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J 7: 2295–2299 (1988).

    Google Scholar 

  3. Athma P, Grotewold E, Peterson T: Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131: 199–209 (1992).

    PubMed  Google Scholar 

  4. Baker B, Schell J, Lörz H, Fedoroff NV: Transposition of the maize controlling element Activator in tobacco. Proc Natl Acad Sci USA 83: 4844–4848 (1986).

    Google Scholar 

  5. Ballcells L, Swinburne J, Coupland G: Transposons as tools for the isolation of plant genes. TIBTECH 9: 31–37 (1991).

    Google Scholar 

  6. Belzile F, Yoder JI: Pattern of somatic transposition in a high copy Ac tomato line. Plant J 2: 173–179 (1992).

    Article  PubMed  Google Scholar 

  7. Bernatzky R, Tanksley SD: Towards a saturated linkage map of tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898 (1986).

    Google Scholar 

  8. Blackman RK, Gelbart WM: The transposable element hobo of Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 523–529. American Society for Microbiology, Washington DC (1989).

    Google Scholar 

  9. Brink RA, Williams E: Mutable R-navajo alleles of cyclic origin in maize. Genetics 73: 273–296 (1973).

    Google Scholar 

  10. Calvi BR, Hong TJ, Findley SD, Gelbart WM: Evidence of a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66: 465–471 (1991).

    Article  PubMed  Google Scholar 

  11. Chen J, Varner JE: An extracellular matrix protein in plants: Characterization of a genomic clone for carrot extensin. EMBO J 4: 2145–2151 (1985).

    Google Scholar 

  12. Chen J, Greenblatt IM, Dellaporta SL: Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117: 109–116 (1987).

    PubMed  Google Scholar 

  13. Chen J, Greenblatt IM, Dellaporta SL: Molecular analysis of Ac transposition and DNA replication. Genetics 130: 665–676 (1992).

    PubMed  Google Scholar 

  14. Coen ES, Robbins TP, Almeida J, Hudson A, Carpenter R: Consequences and mechanisms of transposition in Antirrhinum majus. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 413–436. American Society for Microbiology, Washington DC (1989).

    Google Scholar 

  15. Dash S, Peterson PA: Chromosome constructs for transposon tagging of desirable genes in different parts of the maize genome. Maydica 34: 247–261 (1989).

    Google Scholar 

  16. Dennis ES, Gerlach W, Peacock WJ: Excision of the Ds controlling element from the Adh1 gene of maize. Maydica 31: 47–57 (1986).

    Google Scholar 

  17. Dooner HK, Weck E, Adams S, Ralston E, Favreau M, English J: A molecular genetic analysis of insertions in the bronze locus in maize. Mol Gen Genet 200: 240–246 (1985).

    Google Scholar 

  18. Dooner HK, English J, Ralston E, Weck E: A single genetic unit specifies two transposition functions in the maize element Activator. Science 234: 210–211 (1986).

    Google Scholar 

  19. Dooner HK, Belachew A: Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122: 447–457 (1989).

    Google Scholar 

  20. Dooner HK, Keller J, Harper E, Ralston E: Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3: 473–482 (1991).

    Article  PubMed  Google Scholar 

  21. Döring HP, Starlinger P: Barbara McClintock's controlling elements: now at the DNA level. Cell 39: 253–259 (1984).

    Article  PubMed  Google Scholar 

  22. Döring HP, Tillmann E, Starlinger P: DNA sequence of the maize transposable element Dissociation. Nature 307: 127–130 (1984).

    PubMed  Google Scholar 

  23. Döring HP: Tagging genes with maize transposable elements. An overview. Maydica 34: 73–88 (1989).

    Google Scholar 

  24. Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J: High frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–526 (1990).

    Article  PubMed  Google Scholar 

  25. Fedoroff N, Wessler S, Shure M: Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 243–251 (1983).

    Article  PubMed  Google Scholar 

  26. Fedoroff NV: Maize transposable elements. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 375–411. American Society for Microbiology, Washington DC (1989).

    Google Scholar 

  27. Fitzmaurice WP, Lehman LJ, Nguyen LV, Thompson WF, Wernsman EA, Conkling MA: Development and characterization of a generalized gene tagging system for higher plants using an engineered maize transposon Ac. Plant Mol Biol 20: 177–198 (1992).

    PubMed  Google Scholar 

  28. Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T: Conservation of the regulatory subunit for the Clp APT-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 87: 3513–3517 (1990).

    PubMed  Google Scholar 

  29. Greenblatt IM: A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485 (1984).

    Google Scholar 

  30. Grotewold E, Athma P, Peterson T: A possible hot spot for Ac insertion in the maize P gene. Mol Gen Genet 230: 329–331 (1991).

    Article  PubMed  Google Scholar 

  31. Haring MA, Rommens CMT, Nijkamp HJJ, Hille J: The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol Biol 16: 449–461 (1991).

    PubMed  Google Scholar 

  32. Hehl R, Baker B: Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell 2: 709–721 (1990).

    Article  PubMed  Google Scholar 

  33. Hille J, Koornneef M, Ramanna MS, Zabel P: Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42: 1–23 (1989).

    Google Scholar 

  34. Jones JDG, Carland FM, Maliga P, Dooner HK: Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207 (1989).

    Google Scholar 

  35. Kunze R, Stochaj U, Laufs J, Starlinger P: Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J 6: 1555–1563 (1987).

    Google Scholar 

  36. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).

    PubMed  Google Scholar 

  37. Lassner M, Palys JM, Yoder JI: Genetic transactivation of Dissociation elements in transgenic tomato plants. Mol Gen Genet 218: 25–32 (1989).

    Article  Google Scholar 

  38. McClintock B: Chromosome organization and genic expression. Cold Spring Harbor Symp Quant Biol 16: 13–47 (1951).

    PubMed  Google Scholar 

  39. Messeguer R, Ganal MW, Steffens JC, Tanksley SD: Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16: 753–770 (1991).

    PubMed  Google Scholar 

  40. Moreno MA, Chen J, Greenblatt I, Dellaporta SL: Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics 131: 939–956 (1992).

    PubMed  Google Scholar 

  41. O'Hare K, Rubin GM: Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35 (1983).

    Article  PubMed  Google Scholar 

  42. Osborne BI, Corr CA, Prince JP, Hehl R, Tanksley SD, McCormick S, Baker B: Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics 129: 833–844 (1991).

    PubMed  Google Scholar 

  43. Oshima M, Harada N, Matsuoka M, Ohashi Y: The nucleotide sequence of pathogenesis-related (PR) 1b protein gene of tobacco. Nucl Acids Res 18: 182 (1990).

    PubMed  Google Scholar 

  44. Pohlman RF, Fedoroff NV, Messing J: The nucleotide sequence of the maize controlling element Activator. Cell 37: 635–643 (1984).

    Article  PubMed  Google Scholar 

  45. Robbins TP, Carpenter R, Coen ES: A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. EMBO J 8: 5–13 (1989).

    Google Scholar 

  46. Rommens CMT, van Haaren MJJ, Buchel AS, Mol JNM, van Tunen AJ, Nijkamp HJJ, Hille J: Transactivation of Ds by Ac-transposase gene fusions in tobacco. Mol Gen Genet 231: 433–441 (1992).

    Article  PubMed  Google Scholar 

  47. Rommens CMT, Rudenko GN, Dijkwel PPD, van Haaren MJJ, Ouwerkerk PBF, Blok KM, Nijkamp HJJ, Hille J: Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Mol Biol 20: 61–70 (1992).

    PubMed  Google Scholar 

  48. Yoder JI, Palys J, Alpert K, Lassner M: Ac transposition in transgenic tomato plants. Mol Gen Genet 213: 291–296 (1988).

    Google Scholar 

  49. Yoder JI: Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell 2: 723–730 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommens, C.M.T., Munyikwa, T.R.I., Overduin, B. et al. Transposition pattern of a modified Ds element in tomato. Plant Mol Biol 21, 1109–1119 (1993). https://doi.org/10.1007/BF00023607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023607

Key words

Navigation