Skip to main content
Log in

A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The full-length nucleotide sequence of a barley (Hordeum vulgare L.) leaf mRNA, found to increase rapidly in amount during infection attempts by the powdery mildew fungus (Erysiphe graminis DC. ex Mérat), is reported. The mRNA encodes a polypeptide of 809 amino acid residues which, by sequence comparison, was identified as a member of the 90 kDa heat shock protein (HSP90) family. The encoded protein most resembles the endoplasmic reticulum (ER) resident HSP90 protein, the 94 kDa glucose-regulated protein (GRP94) of vertebrates, as it possesses both the characteristic N-terminal domain including a signal peptide sequence and the C-terminal ER retention signal (Lys-Asp-Glu-Leu). A transcript cross-hybridizing at high stringency accumulated rapidly in leaves upon heat shock treatment. Genomic DNA blot analysis indicated the presence of a family of related genes in the barley genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson MLM, Young BD: Quantitative filter hybridization. In: Hames BD, Higgins SJ (eds) Nucleic Acid Hybridization: A Practical Approach pp. 73–111. IRL Press, Oxford (1985).

    Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K: Current Protocols in Molecular Biology 1987–1988. Wiley, New York (1987).

    Google Scholar 

  3. Bayles CJ, Aist JR: Apparent calcium mediation of resistance of an ml-o barley mutant to powdery mildew. Physiol Mol Plant Path 30: 337–345 (1987).

    Google Scholar 

  4. Binart N, Chambraud B, Levin JM, Garnier J, Baulieu E: A highly charged sequence of chick hsp90: a good candidate for interaction with steroid receptors. J Steroid Biochem 34: 369–374 (1989).

    Article  PubMed  Google Scholar 

  5. Bol JF, Linthorst HJM, Cornelissen BJC: Plant pathogenesis-related proteins by virus infection. Annu Rev Phytopath 28: 113–138 (1990).

    Article  Google Scholar 

  6. Brandt J, Thordal-Christensen H, Vad K, Gregersen PL, Collinge DB: A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J 2: 815–820 (1992).

    Article  PubMed  Google Scholar 

  7. Bryngelsson T, Collinge DB: Biochemical and molecular analyses of the response of barley to infection by powdery mildew. In: Shewry PR (ed) Barley: Genetics Biochemistry, Molecular Biology and Biotechnology, pp. 459–480. CAB International, Wallingford (1991).

    Google Scholar 

  8. Cho BH, Smedegaard-Petersen V: Induction of resistance to Erysiphe graminis f.sp. hordei in near-isogenic barley lines. Phytopathology 76: 301–305 (1986).

    Google Scholar 

  9. Chrispeels MJ: Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42: 21–53 (1991).

    Article  Google Scholar 

  10. Collinge DB, Milligan DE, Dow JM, Scofield G, Daniels MJ: Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Mol Biol 8: 405–414 (1987).

    Google Scholar 

  11. Collinge DB, Slusarenko AJ: Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410 (1987).

    Google Scholar 

  12. Conner TW, LaFayette PR, Nagao RT, Key JL: Sequence and expression of a HSP83 from Arabidopsis thaliana. Plant Physiol 94: 1689–1695 (1990).

    Google Scholar 

  13. D'Amico L, Valsasina B, Daminati MG, Fabbrini MS, Nitti G, Bollini R, Ceriotti A, Vitale A: Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant J 2: 443–455 (1992).

    Article  PubMed  Google Scholar 

  14. Denecke J, Goldman MHS, Demolder J, Seurinck J, Botterman J: The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3: 1025–1035 (1991).

    Article  PubMed  Google Scholar 

  15. Denecke J, Rycke RD, Botterman J: Plant and mammalian sorting signals for protein retention in the endoplasmatic reticulum contain a conserved epitope. EMBO J 11: 2345–2355 (1992).

    PubMed  Google Scholar 

  16. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence-analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  17. Dixon RA, Harrison MJ: Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet 28: 165–234 (1990).

    PubMed  Google Scholar 

  18. Dorner AJ, Wasley LC, Kaufman RJ: Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated chinese hamster ovary cells. J Biol Chem 264: 20602–20607 (1989).

    PubMed  Google Scholar 

  19. Drummond IAS, Lee AS, Resendez E, Steinhardt RA: Depletion of intracellular calcium stores by calcium inophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J Biol Chem 262: 12801–12805 (1987).

    PubMed  Google Scholar 

  20. Ellis RJ: The molecular chaperone concept. Seminars Cell Biol 1: 1–9 (1990).

    Google Scholar 

  21. Ellis RJ: Chaperone function: Cracking the second half of the genetic code. Plant J 1: 9–13 (1991).

    Google Scholar 

  22. Eyal Y, Fluhr R: Cellular and molecular biology of pathogenesis related proteins. Oxford Surv Plant Mol Cell Biol 7: 223–254 (1991).

    Google Scholar 

  23. Fontes EBP, Shank BB, Wrobel RL, Moose SP, O'Brian GR, Wurtzel ET, Boston RS: Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496 (1991).

    Article  PubMed  Google Scholar 

  24. Gabriel DW, Rolfe BG: Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopath 28: 365–391 (1990).

    Article  Google Scholar 

  25. Gething M, Sambrook J: Protein folding in the cell. Nature 355: 34–45 (1992).

    Article  Google Scholar 

  26. Gold RE, Aist JR, Hazen BE, Stolzenburg MC, Marshall MR, Israel HW: Effects of calcium nitrate and chlortetracycline on papilla formation, ml-o resistance and susceptibility of barley to powdery mildew. Physiol Mol Plant Path 29: 115–129 (1986).

    Google Scholar 

  27. Gregersen PL, Collinge DB, Smedegaard V: Early induction of new mRNAs accompanies the resistance reactions of barley to the wheat pathogen Erysiphe graminis f.sp. tritici. Physiol Mol Plant Pathol 36: 471–481 (1990).

    Google Scholar 

  28. Hardesty B, Kramer G: The 90 000 dalton heat shock protein, a lot of smoke but no function as yet. Biochem Cell Biol 67: 749–750 (1989).

    PubMed  Google Scholar 

  29. Herman EM, Tague BW, Hoffman LM, Kjemtrup SE, Crispeels MJ: Retention of phytohemagglutinin with carboxyterminal tetrapeptide KDEL in the nuclear envelope and the endoplasmic reticulum. Planta 182: 305–312 (1990).

    Article  Google Scholar 

  30. Kauss H: Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 47–72 (1987).

    Google Scholar 

  31. Koch G, Smith M, Macer D, Webster P, Mortara R: Endoplasmic reticulum contains a common abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci 86: 217–232 (1986).

    PubMed  Google Scholar 

  32. Kulomaa MS, Weigel NL, Kleinsek DA, Beattie WG, Conneely OM, March C, Zarucki-Schulz T, Schrader WT, O'Malley BW: Amino acid sequence of a chicken heat shock protein derived from the complementary DNA nucleotide sequence. Biochemistry 25: 6244–6251 (1986).

    PubMed  Google Scholar 

  33. Kølster P, Munk L, Stølen O, Løhde J: Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci 26: 903–907 (1986).

    Google Scholar 

  34. Lee AS: Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12: 20–23 (1987).

    Article  Google Scholar 

  35. Lindquist S, Craig EA: The heat shock proteins. Annu Rev Genet 22: 631–677 (1988).

    Article  PubMed  Google Scholar 

  36. Mazzarella RA, Green M: ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem 262: 8875–8883 (1987).

    PubMed  Google Scholar 

  37. Morre SK, Kozak C, Robinson EA, Ullrich SJ, Appella E: Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. J Biol Chem 264: 5343–5351 (1989).

    PubMed  Google Scholar 

  38. Munro S, Pelham HRB: A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907 (1987).

    Article  PubMed  Google Scholar 

  39. Nagao RT, Kimpel JA, Key JL: Molecular and cellular biology of the heat-shock response. Adv Genet 28: 235–274 (1990).

    PubMed  Google Scholar 

  40. Neumann D, Nover L, Parthier B, Rieger R, Scharf K, Wollgiehn R, Nieden UZ: Heat shock and other stress response systems of plants. Biol Zentralbl 108: 1–156 (1989).

    Google Scholar 

  41. Pelham HRB: The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15: 483–486 (1990).

    Article  PubMed  Google Scholar 

  42. Sambrook JF: The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61: 197–199 (1990).

    Article  PubMed  Google Scholar 

  43. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  44. Sargan DR, Tsai M, O'Malley BW: HSP108, a novel heat shock inducible protein of chicken. Biochemistry 25: 6252–6258 (1986).

    PubMed  Google Scholar 

  45. Srivastava PK, Chen Y, Old LJ: 5′-structural analysis of genes encoding polymorphic antigens of chemically induced tumors. Proc Natl Acad Sci USA 84: 3807–3811 (1987).

    PubMed  Google Scholar 

  46. Stoehr PJ, Cameron GN: The EMBL data library. Nucl Acids Res 19: 2227–2230 (1991).

    PubMed  Google Scholar 

  47. Takamatsu S, Ishizaki H, Kunoh H: Cytological studies of early stages of powdery mildew in barley and wheat. V. Effects of calcium on the infection of coleoptiles of barley by Erysiphe graminis hordei. Can J Bot 56: 2544–2549 (1978).

    Google Scholar 

  48. Taylor JL, Fritzemeier K, Haüser I, Kombrink E, Rohwer F, Schröder M, Strittmatter G, Hahlbrock K: Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact 3: 72–77 (1990).

    PubMed  Google Scholar 

  49. Thordal-Christensen H, Brandt J, Cho BH, Gregersen PL, Rasmussen SK, Smedegaard-Petersen V, Collinge DB: cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus, Erysiphe graminis. Physiol Mol Plant Path 40: 395–409 (1992).

    Google Scholar 

  50. Thordal-Christensen H, Smedegaard-Petersen V: Comparison of resistance-inducing abilities of virulent and avirulent races of Erysiphe graminis f.sp. hordei and a race of Erysiphe graminis f.sp. tritici in barley. Plant Path 37: 20–27 (1988).

    Google Scholar 

  51. Thordal-Christensen H, Smedegaard-Petersen V: Correlation between induced resistance and host fluorescence in barley inoculated with Erysiphe graminis. J Phytopath 123: 34–46 (1988).

    Google Scholar 

  52. Vaux D, Tooze J, Fuller S: Identification by anti-idiotype antibodies of an intracellular membrane protein that recognize a mammalian endoplasmic reticulum retention signal. Nature 345: 495–502 (1990).

    Article  PubMed  Google Scholar 

  53. Vierling E: The role of heat shock proteins in plant. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620 (1991).

    Article  Google Scholar 

  54. von Heine G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    PubMed  Google Scholar 

  55. Wandelt CI, Khan MRI, Craig S, Schroeder HE, Spencer D, Higgins TJV: Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. The Plant Journal 2: 181–192 (1992).

    Article  PubMed  Google Scholar 

  56. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

  57. Yost HJ, Petersen RB, Lindquist S: RNA metabolism: strategies for regulation in the heat shock response. Science 6: 223–227 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther-Larsen, H., Brandt, J., Collinge, D.B. et al. A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Mol Biol 21, 1097–1108 (1993). https://doi.org/10.1007/BF00023606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023606

Key words

Navigation