Skip to main content
Log in

Seasonal succession, standing crop and determinants of primary productivity of the phytoplankton of Ministik Lake, Alberta, Canada

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ministik Lake (longitude 113°01′; latitude 53°21′), a well-mixed, shallow (mean depth 1.83 m), eutrophic lake is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop size with increasing depth. Standing crops and primary productivity are low during the winter but pronounced spring and late summer/early autumn maxima occur. Mean yearly areal standing crop (∑B) and primary productivity (∑A) were 199.2 mg m−2 chlorophyll a and 319.5 mg C hr−1 m−2 respectively. Annual productivity was estimated at 1399,6 g C m−2yr−1. The mean increase in the extinction coefficient (∈) per unit increase in standing crop (B) was 0.03 In units m−1. High non-algal light attenuation (∈q) occurred averaging 46% which prevented the ratio B from attaining more than 74.2% of the theoretical maximum except once when selfshading occurred. Insignificant relationships existed between B (mg m−3 chlorophyll a) and Amax (mg C hr−1 m−3), ∑A and ∑B and ∑A and B. Close correlations existed between ∑A and Amax/∈ and ∑A and I0 (W m−2). The depth of the euphotic zone (Zeu) varied between 0.6 and 2.0 m; the average relationship between zeu and ∈ was zeu = 3.78/te, and the mean standing crop in the euphotic zone represented 58.3% of the theoritical maximum. The high ∈q values made the model of Talling (1957) inapplicable to this lake. The Q10 value for the lake was 1.20. ∅max (mg C chlorophyll a −1 hr−1) was closely related to both temperature and irradiance, and depressed by high pH values.

Growth of the cyanophycean algae was correlated with temperature, chlorophycean algae with phosphate-phosphorus and temperature and the diatoms with dissolved silica and phosphate-phosphorus, but only in the case of Chaetoceros elmorii did any nutrient appear limiting. Indirect evidence that free CO2 limited photosynthetic rates is provided by the ∅max:pH relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey-Watts, A. E. 1976a. Planktonic diatoms and some diatom-silica relations in a shallow eutrophic Scottish loch. Freshwat. Biol. 6: 69–80.

    Article  Google Scholar 

  • Bailey-Watts, A. E. 1979b. Planktonic diatoms and silica in Loch Leven, Kinross, Scotland- one month silica budget. Freshwat. Biol. 6: 203–213.

    Article  Google Scholar 

  • Bailey-Watts, A. E., Bindloss, M. E. & Belcher, J. H. 1968. Freshwater primary production by a blue-green alga of bacterial size. Nature, London 22: 1344–1345.

    Article  Google Scholar 

  • Bayrock, L. A. & Hughes, G. M. 1962. Surficial geology of the Edmonton district, Alberta. Preliminary Report 62–6, Research Council of Alberta, Edmonton, Alberta. 40 pp.

    Google Scholar 

  • Belcher, J. H., Swale, E. M. F. & Heron, J. 1966. Ecological and morphological observation on a population of Cyclotella pseudostelligera Hustedt. J. Ecol. 54: 335–340.

    Article  Google Scholar 

  • Bindloss, M. E. 1974. Primary productivity of phytoplankton in Loch Leven, Kinross. Proc. Roy. Soc. Edinb. (B) 74: 157–181.

    Google Scholar 

  • Bowser, W. E., Kjearsgaard, A. A., Peters, T. W. & Wells, R. E. 1962. Soil Survey of E dmonton. Sheet 83-H Alberta. Alberta Soil Survey, Report No. 21, University of Alberta, Bulletin No. 55–4, Edmonton, Alberta. 66 pp.

    Google Scholar 

  • Bozniak, E. G. 1966. Periodicity and ecology of the phytoplankton in two Alberta lakes. M.Sc. thesis, University of Alberta.

  • Bozniak, E. G. & Kennedy, L. L. 1968. Periodicity and ecology of the phytoplankton in an oligotrophic and eutrophic lake. Can. J. Bot. 46: 1259–1271.

    Article  CAS  Google Scholar 

  • Darley, W. M. & Volcani, B. E. 1969. Role of silicon in diatom metabolism. Expl. Cell Res. 58: 334–342.

    Article  CAS  Google Scholar 

  • Edwards, A. M. C. 1973. The variation of dissolved constituents with discharge in some Norfolk rivers. J. Hydrol. 18: 219–242.

    Article  CAS  Google Scholar 

  • Felföldy, L. J. M. 1962. On the role of pH and inorganic carbon sources in photosynthesis of unicellular algae. Acta. biol. hung. 13: 207–214.

    Google Scholar 

  • Felföldy, L. J. M. 1965. Photosynthesis of the unicellular green algal strain, Scenedesmus obtusiusculus Chod. at various pH values. Acta. biol. hung. 15: 351–359.

    Google Scholar 

  • Ganf, G. G. 1972. The regulation of net primary production in Lake George, Uganda, East Africa.. Proc. I.B.P.-U.N.E.S.C.O. Symposium on ‘Productivity Problems of Freshwater’ (Ed.) Z. Kajak and A. Hillbricht-Ilkowska, pp. 693–708. P.W.N. Polish Scientific Publishers, Warsawa-Kraków.

    Google Scholar 

  • Ganf, G. G. 1974. Incident solar irradiance and underwater light penetration as factors controlling the chlorophyll a content of a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 623–639.

    Google Scholar 

  • Ganf, G. G. 1975. Photosynthetic production and irradiance-photosynthesis relationships of the phytoplankton from a shallow equatorial lake (Lake George, Uganda). Oecologia (Berlin) 18: 165–183.

    Article  Google Scholar 

  • Gelin, C. 1975. Nutrients, biomass and primary productivity of nannoplankton in eutrophic Lake Vombsjön, Sweden. Oikos 26: 121–139.

    Article  CAS  Google Scholar 

  • Gerloff, G. E. & Skoog, F. 1954.Cell contents of nitrogen and phosphorus as a measure of their availability for growth of Microcystis aeruginosa. Ecology 35: 348–353.

    Article  CAS  Google Scholar 

  • Gibson, C. E., Wood, R. B., Dickson, E. L. & Jewson, D. H. 1971. The succession of phytoplankton in Lough Neagh 1968–70. Mitt. Int. Verein. Theor. angew. Limnol. 19: 146–160.

    Google Scholar 

  • Glooschenko, W. A., Moore, J. E., Munawar, M. & Vollenweider, R. A. 1974. Primary Production in lakes Ontario and Erie: a comparative study. J. Fish. Res. Board, Can. 31: 253–263.

    Article  Google Scholar 

  • Golterman, H. L. 1975. Physiological limnology. pp. 134–144, Elsevier, Amsterdam.

    Google Scholar 

  • Granhall, U. & Lundgren, H. 1971. Nitrogen fixation in Lake Erken. Limnol. Oceanogr. 16: 711–719.

    Article  CAS  Google Scholar 

  • Hall, D. 1971. The experimental field approach to secondary production p. 210–221. In: W. T. Edmondson and G. G. Winberg (ed.). A manual on methods for the assessment of secondary production in freshwater.. I.B.P. Handbook No. II. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Hammer, U. T. 1964. The succession of ‘bloom’ species of bluegreen algae and some causal factors. Verh. int. Verein. Limnol. 15: 829–836.

    Google Scholar 

  • Happey, C. M. 1968. Physico-chemical and phytoplankton investigations in Abbot's Pond. somerset. Ph. D. thesis, University of Bristol.

  • Happey, C. M. 1970. The effect of stratification on phytoplankton diatoms in a small body of water. J. Ecol. 58: 635–651.

    Article  Google Scholar 

  • Herodek, S. & Tamśs, G. 1973. Pre primary production of phytoplankton in Lake Balaton, April-2-September 1972. AntAnnal. Bot. Tihany 40: 207–218.

    Google Scholar 

  • Herodek, S. & Tamás, G. 1974. The primary production of

  • Herodek, S. & Tamás, G. 1975. Phytoplankton production in Lake Balaton. Symp. Biol. Hung. 15: 29–34.

    Google Scholar 

  • Hickman, M. 1973. The standing crop and primary productivity of phytoplankton of Abbot's Pond, north Somerset. J. Ecol. 61: 269–287.

    Article  Google Scholar 

  • Hickman, M. 1974. The seasonal succession and vertical distribution of the phytoplankton in Abbot's Pond, north Somerset. U.K. Hydrobiologia 44: 127–147.

    Article  Google Scholar 

  • Hickman, M. 1976. Phytoplankton population efficiency studies. Int. Revue ges. Hydrobiol 61: 279–295.

    Article  Google Scholar 

  • Hickman, M. 1977. Studies on the epipelic algal community-seasonal changes and standing crops at shallow littoral stations in four lakes. Arch. Protistenkunde. 120: 1–15.

    Article  Google Scholar 

  • Hickman, M. 1978. Ecological studies on the epipelic algal community in five prairie-parkland lakes in central Alberta. Can J. Bot. 56: 991–1009.

    Article  CAS  Google Scholar 

  • Hickman, M. & Jenkerson, C. G. 1978. Phytoplankton, primary production and population efficiency studies in a prairie-parkland lake near Edmonton, Alberta, Canada. Int. Revue ges. Hydrobiol. 63: 1–24.

    Article  Google Scholar 

  • Holden, A. V. & Caines, C. A. 1974. Nutrient chemistry in Loch Leven, Kinross. Proc. Roy Soc. Edinb. (B) 74: 101–121.

    CAS  Google Scholar 

  • Horne, A. J. & Fogg, G. E. 1970. Nitrogen fixation in some English lakes. Proc. R. Lond. B. Biol. Sci. 175: 351–366.

    Article  CAS  Google Scholar 

  • Horne, A. J. & Goldman, C. 1972. Nitrogen fixation in Clear Lake, California. In, Seasonal Variation and the role of heterocysts. Limnol. Oceanogr. 17: 678–692.

    Article  Google Scholar 

  • Hughes, J. C. & Lund, J. W. G. 1962. The rates of growth of Asterionella formosa Hass. in relation to its ecology. Arch. Mikrobiol. 42: 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson, G. E. 1967. A Treatise on Limnology. Vol. II. Introduction to Lake Biology and the Limnoplankton. J. Wiley & Sons, New York.

    Google Scholar 

  • Jewson, D. H. 1976. The interaction of components controlling net phytoplankton photosynthesis in a well-mixed lake (Lough Neagh, Northern Ireland). Freshwat. Biol. 6: 551–576.

    Article  Google Scholar 

  • Jónasson, P. M., Larstein, E. & Rebsdorf, A. 1974. Production, insolation and nutrient budget of eutrophic Lake Esrom. Oikos 25: 255–277.

    Article  Google Scholar 

  • Jones, R. I. 1977. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). II. Phytoplankton production and its chief determinants. J. Ecol. 65: 561–577.

    Article  CAS  Google Scholar 

  • Ketchum, B. H. 1939. The development and restoration of deficiencies in the phosphorus and nitrogen composition of unicellular plant. J. Cell. Comp. Physiol. 13: 373–381.

    Article  CAS  Google Scholar 

  • King, D. L. 1974. The role of carbon in eutrophication. J. Wat. Pollut. Control Fed. 42: 2035–2051.

    Google Scholar 

  • Kirk, J. T. O. 1975a. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. General treatment of suspensions of pigmented cells. New Phytol. 75: 11–20.

    Article  Google Scholar 

  • Kirk, J. T. O. 1975b. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol. 75: 21–36.

    Article  Google Scholar 

  • Klarer, D. M. & Hickman, M. 1975. The effect of thermal effluent upon the standing crop of an epiphytic algal community. Int. Revue ges. Hydrobiol. 60: 17–62.

    Article  CAS  Google Scholar 

  • Kling, H. 1975. Phytoplankton successions and species distribution in prairie ponds of the Erickson-Elphinstone District, Southwestern Manitoba. Fisheries and Marine Service, Technical Report No. 512, 31 pp.

  • Lewin, J. C. 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulphur compounds in silicon utilization. J. gen. Physiol. 37: 589–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin, J. C. & Reimann, B. E. F. 1969. Silicon and plant growth. Ann. Rev. Pl. Physiol. 20: 289–304.

    Article  CAS  Google Scholar 

  • Lin, C. K. 1968. Phytoplankton succession in Astotin Lake, Elk Island National Park, Alberta. M.Sc. thesis, University of Alberta.

  • Lin, C. K. 1972. Phytoplankton succession in a eutrophic lake with special reference to blue-green algal blooms. Hydrobiologia 39: 321–334.

    Article  Google Scholar 

  • Lorenzen, C. J. 1972. Extinction of light in the ocean by phytoplankton. J. Cons. Int. Explor. Mer. 34: 262–267.

    Article  Google Scholar 

  • Lund, J. W. G. 1949. Studies on Asterionella formosa Hass. I. The origin and nature of the cells producing seasonal maxima. J. Ecol. 38: 1–35.

    Article  Google Scholar 

  • Lund, J. W. G. 1950. Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. J. Ecol. 38: 1–35.

    Article  Google Scholar 

  • Lund, J. W. G. 1965. The ecology of freshwater phytoplankton. Biol. Rev. 40: 231–293.

    Article  Google Scholar 

  • Lund, J. W. G. Kipling, C. & LeCren, E. D. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Megard, R. O. 1972. Phytoplankton, photosynthesis and phosphorus in Lake Minnetonka, Minnesota. Limnol. Oceanogr. 17: 68–87.

    Article  CAS  Google Scholar 

  • Meloche, V. W., Leader, G., Safrinski, L. & Juday, C. 1938. The silica and diatom content of Lake Mendota water. Trans. Wisc. Acad. Sci. Arts. Lett. 31: 363–371.

    CAS  Google Scholar 

  • Mortimer, C. H. 1941. The exchange of dissolved substances between mud and water in lakes (Part I and II). J. Ecol. 29: 280–329.

    Article  CAS  Google Scholar 

  • Mortimer, C. H. 1942. The exchange of dissolved substances between mud and water in lakes (Parts III and IV, summary and references). J. Ecol. 30: 147–201.

    Article  CAS  Google Scholar 

  • Mortimer, C. H. 1956. The oxygen content of air-saturated freshwater and aids in calculating percentage saturation. Mitt. Internat. Verein. theor. angew. Limnol. 6: 1–20.

    Google Scholar 

  • Mortimer, C. H. 1971. Chemical exchanges between sediments and water in the Great Lakes—speculations on probably regulatory mechanisms. Limnol. Oceanogr. 16: 387–404.

    Article  CAS  Google Scholar 

  • Moss, B. 1967a. A spectrophotometric method for the estimation of percentage of degradation of chlorophylls to pheopigments in extracts of algae. Limnol. Oceanogr. 12: 335–340.

    Article  CAS  Google Scholar 

  • Moss, B. 1967b. A note on the estimation of chlorophyll a in freshwater algal communities. Limnol. Oceanogr. 12: 340–342.

    Article  CAS  Google Scholar 

  • Moss, B. 1972. Studies on Gull Lake, Michigan. I. Seasonal succession and depth distribution of phytoplankton. Freshwat. Biol. 2: 289–307.

    Article  Google Scholar 

  • Moss, E. H. 1955. The vegetation of Alberta. Bot. Rev. 21: 493–567.

    Article  Google Scholar 

  • Moss, E. H. 1959. Flora of Alberta. Univ. Toronto Press, Toronto.

    Google Scholar 

  • Pearsall, W. H. 1923. A theory of diatom periodicity. J. Ecol. 11: 165–183.

    Article  Google Scholar 

  • Redfield, A. C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton, p. 177–192. In, James Johnstone memorial volume. Univ. Liverpool Press, Liverpool.

    Google Scholar 

  • Reynolds, C. S. 1971. The ecology of the planktonic blue-green algae in the north Shropshire meres. Field Studies 3: 409–432.

    Google Scholar 

  • Reynolds, C. S. 1972. Growth, gas vacuolation and buoyancy in a natural population of a blue-green algae. Freshwat. Biol. 2: 87–106.

    Article  Google Scholar 

  • Reynolds, C. S. 1973a. The phytoplankton of Cross Mere, Shropshire. Br. Phycol. J. 8: 153–162.

    Article  Google Scholar 

  • Reynolds, C. S. 1973b. Phytoplankton periodicity of some north Shropshire meres. Br. Phycol. J. 8: 301–320.

    Article  Google Scholar 

  • Reynolds, C. S. 1973c. Growth and buoyancy of Microcystis aeruginosa Kütz. emend Elenkin in a shallow, eutrophic lake. Proc. R. Soc. London B. 184: 29–50.

    Article  Google Scholar 

  • Reynolds, C. S. 1973d. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwat. Biol. 3: 89–110.

    Article  Google Scholar 

  • Richards, F. A. & Vaccaro, R. F. 1956. The Carioco Trench, an anaerobic basin in the Caribbean Sea. Deep Sea Res. 3: 214–228.

    Article  CAS  Google Scholar 

  • Riley, G. A. 1943. Physiological aspects of spring diatom flowerings. Bull. Bingham Oceanogr. Coll. 8: 1–53.

    Google Scholar 

  • Rodhe, W. 1948. Environmental requirements of freshwater plankton algae. Symbol. Bot. Upsal. 10: 149 pp.

    Google Scholar 

  • Rodhe, W. 1965. Standard correlation between pelagic photosynthesis and light. Mem. ist. Ital. Idrobiol. 18 Suppl.: 365–381.

    Google Scholar 

  • Rodhe, W., Vollenwieder, R. A. & Nauwerck, A. 1958. The primary production and standing crop of phytoplankton. In: Buzzarti-Traverso, A. A. (Ed.) ‘Perspectives in marine biology’, University of California Press, pp. 299–322.

  • Schindler, D. W. 1971. Carbon, nitrogen and phosphorus and the eutrophication of freshwater lakes. J. Phycol. 7: 321–329.

    CAS  Google Scholar 

  • Schindler, D. W., Armstrong, F. A. J., Holmgren, S. K. & Brunskill, G. J. 1971. Eutrophication of Lake 227, Experimental Lakes Area, northwestern Ontario, by addition of phosphate and nitrate. J. Fish. Res. Bd., Can. 28: 1763–1782.

    Article  CAS  Google Scholar 

  • Schindler, D. W. & Holmgren, S. K. 1971. Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J. Fish. Res. Bd., Can. 28: 189–201.

    Article  Google Scholar 

  • Schindler, D. W., Schmidt, R. V. & Reid, R. A. 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J. Fish. Res. Board, Can. 29: 1627–1631.

    Article  CAS  Google Scholar 

  • Schindler, D. W., Brunskill, G. J., Emerson, S., Broeckner, W. S. & Pend, T. H. 1972. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science, N.Y. 177: 1192–1194.

    Article  CAS  Google Scholar 

  • Schindler, D. W., Kling, H., Schmidt, R. V., Prokopowich, J., Forst, V. E., Reid, R. A. & Capel, M. 1973. Eutrophication of Lake 227 by addition of phosphate and nitrate: the second, third, and fourth years of enrichment, 1970, 1971 and 1972. J. Fish. Res. Bd., Can. 30: 1415–1440.

    Article  CAS  Google Scholar 

  • Schindler, D. W. & Fee, E. J. 1973. Diurnal variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in Lake 227. J. Fish. Res. Bd., Can. 30: 1501–1510.

    Article  CAS  Google Scholar 

  • Smayda, T. J. 1963. Succession of phytoplankton and the ocean as a holocoenotic environment. Symposium on Marine Microbiology (Ed. by C. H. Oppenheimer) pp. 260–274. Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Soeder, C. J. 1965. Some aspects of phytoplankton growth and activity. Mem. ist. Ital. Idrobiol. 18 Suppl.: 47–59.

    Google Scholar 

  • Steel, J. A. 1974. Reservoir algal productivity. In: ‘The Use of mathematical models in water pollution control’. Symposium, University of Newcastle-upon-Tyne, Sept. 10–14, 1973.

  • Steemann-Neilsen, E. 1955. The production of organic matter by the phytoplankton in a Danish lake receiving extraordinary great amounts of nutrient salts. Hydrobiologia 7: 68–74.

    Article  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P. & Burris, R. H. 1968. Acetylene reduction by nitrogen fixing blue-green algae. Arch. Mikrobiol. 62: 336–348.

    Article  CAS  PubMed  Google Scholar 

  • Svedrup, H. U., Johnson, M. W. & Fleming, R. H. 1942. The oceans, their physics, chemistry and general biology. PrenticeHall, Englewood Cliffs, N.J.

    Google Scholar 

  • Talling, J. F. 1957. The phytoplankton population as a compound photosynthesis system. New Phytol. 56: 133–149.

    Article  Google Scholar 

  • Talling, J. F. 1960. Self-shading effects in natural populations of a planktonic diatom. Wett. Leben 12: 235–242.

    Google Scholar 

  • Talling, J. F. 1965. The photosynthetic activity of phytoplankton in East African lakes. Int. Revue ges. Hydrobiol. 50: 1–32.

    Article  Google Scholar 

  • Talling, J. F. 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.

    Article  CAS  Google Scholar 

  • Tessenow, U. 1964. Experimentaluntersuchungen zur Kieselsaurehaushalt der Binnengewässer. Arch. Hydrobiol. 32: 136.

    Google Scholar 

  • Vollenweider, R. A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to phosphorus and nitrogen as factors in eutrophication. Organ. Econ. Coop. Devel. Tech. Rep. OAS/CSI/68.27.

  • Wheelock, J. M. 1969. Phytoplankton ecology in Wabamun Lake and the effect of thermal pollution. M.Sc., thesis, University of Alberta.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickman, M. Seasonal succession, standing crop and determinants of primary productivity of the phytoplankton of Ministik Lake, Alberta, Canada. Hydrobiologia 64, 105–121 (1979). https://doi.org/10.1007/BF00023186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023186

Keywords

Navigation