Skip to main content
Log in

Effect of larval fish and nutrient enrichment on plankton dynamics in experimental ponds

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m−3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1989. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC., 1550 pp.

    Google Scholar 

  • Barica, J., H. Kling & J. Gibson, 1980. Experimental manipulation of algal bloom composition by nitrogen addition. Can. J. Fish. aquat. Sci. 37: 1175–1183.

    Google Scholar 

  • Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Horning, R. Krupse & S. Reichel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen Reservoir. Limnologica 19: 97–110.

    Google Scholar 

  • Benndorf, J., 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 187–203.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Culver, D. A., 1991. Effects of the N:P ratio in fertilizer for fish hatchery ponds. Verh. int. Ver. Limnol. 24: 1503–1507.

    Google Scholar 

  • Cushing, D. H., 1983. Are fish larvae too dilute to affect the density of their food organism?. J. Plankton Res. 5: 847–854.

    Google Scholar 

  • Darley, W. M., 1982. Algal biology: A physiological approach. Blackwell Scientific Publication, Oxford, 168 pp.

    Google Scholar 

  • Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica 19: 21–26.

    Google Scholar 

  • Dettmers, J. M. & R. A. Stein, 1992. Food consumption by larval gizzard shad: zooplankton effects and its implications for reservoir communities. Trans. am. Fish. Soc. 121: 494–507.

    Article  Google Scholar 

  • DeVries, D. R. & R. A. Stein, 1992. Complex interactions between fish and zooplankton: quantifying the role of an open-water planktivore. Can. J. Fish. aquat. Sci. 49: 1216–1227.

    Google Scholar 

  • Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection and feeding rates in cladocerans. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. The University Press of New England, Hanover (N.H.); Lond.: 282–291.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 83–97.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiologia 88: 155–177.

    Google Scholar 

  • Gulati, R. D., 1990. Structural and grazing responses of zooplankton community to biomanipulation of some Dutch water bodies. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 99–118.

    Google Scholar 

  • Gulati, R. D. & van Donk, 1989. Biomanipulation in The Netherlands: applications in freshwater ecosystems and estuaries water — an introduction. Hydrobiol. Bull. 23: 1–4.

    Google Scholar 

  • Helal, H. & D. A. Culver, 1991. N:P ratio and plankton production in fish ponds. Verh. int. Ver. Limnol. 24: 1508–1511.

    Google Scholar 

  • Henrikson, L., H. G. Nyman, H. G. Oscarson & J. A. E. Stenson, 1980. Trophic changes without change in external nutrient loading. Hydrobiologia 68: 257–263.

    Google Scholar 

  • Hrbáček, J., M. Dvořáková, V. Korinek & L. Procházková, 1961. Demonstration effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verh. int. Ver. Limnol. 14: 162–195.

    Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. aquat. Sci. 51: 1692–1699.

    Google Scholar 

  • Lazzaro, X., 1987. A review of planktivorous fishes: their evolution, feeding behaviors, selectivities, and impacts. Hydrobiologia 146: 97–167.

    Google Scholar 

  • McQueen, D. W., J. R. Post & E. L. Mills, 1986. Trophic relationship in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a ‘top-down’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Google Scholar 

  • Porter, K. G. & R. McDonough, 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  • Qin, J. & D. A. Culver, 1992. The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture 108: 257–276.

    Article  Google Scholar 

  • Qin, J. & D. A. Culver, 1995. Effect of young-of-the-year walleye (Percideae: Stizostedion vitreum) on plankton dynamics and water quality in ponds. Hydrobiologia 297: 217–227.

    Google Scholar 

  • Qin, J. & S. T. Threlkeld, 1990. Experimental comparison of the effects of benthivorous fish and planktivorous fish on plankton communities. Arch. Hydrobiol. 119: 121–141.

    Google Scholar 

  • Qin, J., D. A. Culver & N. Yu, 1994. Comparative growth of larval walleye and saugeye, and their impact on zooplankton in experimental ponds. Prog. Fish-Cult. 56: 91–99.

    Article  Google Scholar 

  • Raisanen, G. A. & R. L. Applegate, 1983. Prey selection of walleye fry in an experimental system. Prog. Fish-Cult. 45: 209–214.

    Google Scholar 

  • Richardson, W. B. & S. T. Threlkeld, 1992. Complex interactions of multiple aquatic consumers: an experimental mesocosm manipulation. Can. J. Fish. aquat. Sci. 50: 29–42.

    Google Scholar 

  • Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73: 551–560.

    Google Scholar 

  • SAS, 1988. SAS User's Guide: Statistics, version 6.03. Cary, NC., 1028 pp.

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Google Scholar 

  • Shahady, T. D., 1993. Impact of larval Dorosoma predation on Daphnia parvula dynamics. Freshwat. Biol. 30: 279–287.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by manipulation, Round Lake, Minnesota — the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green in lake algae phytoplankton. Science 221: 669–671.

    Google Scholar 

  • Smith, V. H., 1990. Phytoplankton responses to eutrophication in inland waters. In I. Akatsuka (ed.), Introduction to applied phycology. Academic Publishing bv. The Hague, The Netherlands: 231–249.

    Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.

    Google Scholar 

  • Tátrai, I., G. Tóth, J. E. Ponyi, J. Zlinskzky & V. Istvánovics, 1990. Bottom-up effects of bream (Abramis brama L.) in lake Balaton. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 167–175.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • Trimbee, A. M. & E. E. Prepas, 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can. J. Fish. aquat. Sci. 44: 1337–1342.

    Google Scholar 

  • Vaga, R. M., 1986. Experimental studies on trophic interactions in the plankton. Ph.D. dissertation. The Ohio State University, Columbus, 256 pp.

    Google Scholar 

  • Vanni, M. J., C. Luecke, J. F. Kitchell, Y. Allen, J. Temte & J. J. Magnuson, 1991. Effects on lower trophic levels of massive fish mortality. Nature 344: 333–335.

    Article  Google Scholar 

  • Wetzel, G. R. & G. E. Likens, 1991. Limnological analyses. Springer Verlag, New York, 391 pp.

    Google Scholar 

  • Winer, B. J., 1991. Statistical principles in experimental design. McGraw-Hill, New York, 1057 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Culver, D.A. Effect of larval fish and nutrient enrichment on plankton dynamics in experimental ponds. Hydrobiologia 321, 109–118 (1996). https://doi.org/10.1007/BF00023168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023168

Key words

Navigation