Skip to main content
Log in

Import of a new chloroplast inner envelope protein is greatly stimulated by potassium phosphate

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA clone encoding a major chloroplast inner envelope membrane protein of 96 kDa (IEP96) was isolated and characterized. The protein is synthesized as a larger-molecular-weight precursor (pIEP96) which contains a cleavable N-terminal transit sequence of 50 amino acids. The transit peptide exhibits typical stromal targeting information. It is cleaved in vitro by the stromal processing peptidase, though the mature protein is clearly localized in the inner envelope membrane. Translocation of pIEP96 into chloroplasts is greatly stimulated in the presence of 80 mM potassium phosphate which results in an import efficiency of about 90%. This effect is specific for potassium and phosphate, but cannot be ascribed to a membrane potential across the inner envelope membrane. Protein sequence analysis reveals five stretches of repeats of 26 amino acids in length. The N-terminal 300 amino acids are 45% identical (76% similarity) to the 35 kDa α-subunit of acetyl-CoA carboxyl-transferase from Escherichia coli. The C-terminal 500 amino acids share significant similarity (69%) with USOI, a component of the cytoskeleton in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Pi :

phosphate

IEP:

inner envelope membrane protein

pIEP:

precursor form of IEP

SSU:

small subunit of ribulose-1,5-bisphosphate carboxylase oxygenase

αIEP96pep :

peptide specific antiserum to IEP96

αIEP96pol :

polyspecific antiserum to IEP96

References

  1. Abad St, Clark E, Lamppa GK: Properties of a chloroplast enzyme that cleaves the chlorophyll a/b binding protein precursor. Optimization of an organelle-free reaction. Plant Physiol 90: 117–124 (1989).

    Google Scholar 

  2. Baldet P, Alban C, Axiotis S, Douce R: Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys 303: 67–73 (1993).

    Article  PubMed  Google Scholar 

  3. Block MA, Dorne A-J, Joyard J, Douce R: Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. J Biol Chem 258: 13273–13280 (1983).

    PubMed  Google Scholar 

  4. Chua NH, Gillham NW: The sites of synthesis of the principal thylakoid membrane polypeptides in Chlamydomonas reinhardtii. J Cell Biol 74: 441–452 (1977).

    Article  PubMed  Google Scholar 

  5. Cline K, Werner-Washburne M, Andrews J, Keegstra K: Thermolysin is a suitable protease for probing the surface of intact pea chloroplasts. Plant Physiol 75: 675–678 (1984).

    Google Scholar 

  6. deBoer AD, Weisbeek PJ: Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta 1071: 221–253 (1991).

    PubMed  Google Scholar 

  7. Dreses-Werringloer U, Fischer K, Wachter E, Link TA, Flügge UI: cDNA sequence and deduced amino acid sequence of the precursor of the 37-kDa inner envelope membrane polypeptide from spinach chloroplasts. Its transit peptide contains an amphiphilic α-helix as the only detectable structural element. Eur J Biochem 195: 361–368 (1991).

    PubMed  Google Scholar 

  8. Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C: The triose phosphate-3-phosphoglyceratephosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8: 39–46 (1989).

    PubMed  Google Scholar 

  9. Flügge UI, Weber A, Fischer K, Lottspeich F, Eckerskorn C, Waegemann K, Soll J: The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor. Nature 353: 364–367 (1991).

    Article  Google Scholar 

  10. Grossmann A, Bartlett S, Chua NH: Energy dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285: 625–628 (1980).

    Google Scholar 

  11. Harlow E, Lane D: Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1988).

    Google Scholar 

  12. Hirsch St, Muckel E, Heemeyer F, vonHeijne G, Soll J: A receptor component of the chloroplast protein translocation machinery. Science 266: 1989–1992 (1994).

    PubMed  Google Scholar 

  13. Huang L, Berkelman T, Franklin AE, Hoffman NE: Characterization of a gene encoding a Ca2+-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci USA 90: 10066–10070 (1993).

    PubMed  Google Scholar 

  14. Joyard J, Billecocq A, Barlett SG, Block MA, Chua N-H, Douce R: Localization of polypeptides to the cytosolic side of the outer envelope membrane of spinach chloroplasts. J Biol Chem 258: 10000–10006 (1983).

    PubMed  Google Scholar 

  15. Joyard J, Block MA, Douce R: Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509 (1991).

    PubMed  Google Scholar 

  16. Keegstra K, Youssif AE: Isolation and characterization of chloroplast envelope membranes. Meth Enzymol 118: 316–325 (1986).

    Google Scholar 

  17. Klein RR, Salvucci ME: Photoaffinity labeling a mature and precursor forms of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase after expression in Escherichia coli. Plant Physiol 98: 546–553 (1992).

    Google Scholar 

  18. Kondo H, Shiratsuchi K, Yoshimoto T, Masuda T, Kitazono A, Tsuru D, Anai M, Sekiguchi M, Tanabe T: Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci USA 88: 9730–9733 (1991).

    PubMed  Google Scholar 

  19. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  20. Li H-M, Sullivan TD, Keegstra K: Information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the maize Bt1-encoded protein. J Biol Chem 267: 18999–19004 (1992).

    PubMed  Google Scholar 

  21. Li S-J, Cronan JE: The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 267: 16841–16847 (1992).

    PubMed  Google Scholar 

  22. Nakajima H, Hirata A, Ogawa Y, Yonehara T, Yoda K, Yamasaki M: A cytoskeleton-related gene, US02, is required for intracellular protein transport in Saccharomyces cerevisiae. J Cell Biol 113: 245–260 (1991).

    Article  PubMed  Google Scholar 

  23. O'Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021 (1975).

    PubMed  Google Scholar 

  24. Olsen LJ, Keegstra K: The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space. J Biol Chem 267: 433–439 (1992).

    PubMed  Google Scholar 

  25. Salomon M, Fischer K, Flügge U-I, Soll J: Sequence analysis and protein import studies of an outer chloroplast envelope polypeptide. Proc Natl Acad Sci USA 87: 5778–5782 (1990).

    PubMed  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  27. Sanger F, Nickler S, Coulson AR: DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  28. Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusawa I, Matsuno R: Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 268: 25118–25123 (1993).

    PubMed  Google Scholar 

  29. Soll J: α-tocopherol and plastoquinone synthesis in chloroplast membranes. Meth Enzymol 148: 383–392 (1987).

    Google Scholar 

  30. Soll J, Waegemann K: A functionally active protein import complex from chloroplasts. Plant J 2: 253–256 (1992).

    Google Scholar 

  31. Soll J, Alefsen H: The protein import apparatus of chloroplasts. Physiol Plant 87: 433–440 (1993).

    Article  Google Scholar 

  32. Theg StM, Scott SV: Protein import into chloroplasts. Trends Cell Biol 3: 186–190 (1993).

    Article  PubMed  Google Scholar 

  33. Towbin A, Staehlin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354 (1979).

    PubMed  Google Scholar 

  34. vonHeijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    PubMed  Google Scholar 

  35. Waegemann K, Paulsen H, Soll J: Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett 261: 89–92 (1990).

    Article  Google Scholar 

  36. Waegemann K, Soll J: Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J 1: 149–158 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, S., Soll, J. Import of a new chloroplast inner envelope protein is greatly stimulated by potassium phosphate. Plant Mol Biol 27, 1173–1181 (1995). https://doi.org/10.1007/BF00020890

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020890

Key words

Navigation