Skip to main content
Log in

Fracture toughness characterization of materials under multiaxial loading

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The novel concept of generalized fracture toughness characterization of brittle materials subjected to multiaxial loadings is presented. The theory emphasizes the fracture process as the result of the opening action of the crack surfaces. The generalized fracture toughness values describing the failure events due to combined loading systems lie on a Fracture Envelope characteristic for a given material. The Cartesian equation of the Envelope in the K 1 K 2plane is specified by the conventional fracture toughness K 1cand Poisson's ratio ν. A Griffith-type fracture criterion permits the prediction of crack propagation onset and crack growth direction.

Résumé

L'article présente le nouveau concept de la force de rupture généralisée qui caractérise les matériaux fragiles sujets à sollicitations multiaxiales. La théorie met en évidence que le phénomène de rupture est le résultat de l'action de déplacement symétrique des surfaces de la fissure. Le lieu des valeurs de la force de rupture généralisée qui décrivent les événements de rupture dûs à conditions de sollicitations combinées est l'Enveloppe de Rupture caracteristique pour un matériel particulier. L'équation Cartésienne de l'Enveloppe dans le plan K 1 K 2est specifiée par la force de rupture conventionelle K 1cet par le rapport de Poisson ν. Un critère de rupture du type Griffith permet la determination de l'amorçage et la direction d'accroissement de la fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Erdogan and G.C. Sih, Journal of Basic Engineering, 85 (1963) 519–527.

    Google Scholar 

  2. G.C. Sih, International Journal of Fracture, 10 (1974) 305–321.

    Google Scholar 

  3. W.T. Chiang, Fracture 1977, 4, ICF4, Waterloo, Canada, 135–149.

  4. A. de S. Jayatilaka, I.J. Jenkins and S.V. Prasad, in Fracture 1977, 3, ICF4, Waterloo, Canada, 15–23.

    Google Scholar 

  5. A.F.C. Liu, AIAA Journal, 12/2 (1974) 180–185.

    Google Scholar 

  6. R.C. Shah, “Fracture Under Combined Modes in 4340 Steel”, ASTM STP 560 (1974) 29–52.

  7. H. Awaji and S. Sato, Journal of Engineering Materials and Technology, 100 (1978) 175–182.

    Google Scholar 

  8. D.L. Jones and D.B. Crisholm, Engineering Fracture Mechanics, 7 (1975) 261–270.

    Article  Google Scholar 

  9. L.P. Pook, Engineering Fracture Mechanics, 3 (1971) 205–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated for United States Department of Energy, Contract DE-AC-12-65SN00052.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Leonardo, G. Fracture toughness characterization of materials under multiaxial loading. Int J Fract 15, 537–552 (1979). https://doi.org/10.1007/BF00019922

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019922

Keywords

Navigation