Skip to main content
Log in

Microcosm analysis of salinity effects on coastal lagoon plankton assemblages

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).

Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).

Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, O. & Y. K. Bentor, 1980. pH-dilution curves of saline waters. Chemical Geol. 7: 307–313.

    Article  Google Scholar 

  • Balcer, M. D., N. L. Korda & S. I. Dodson, 1984. Zooplankton of the Great Lakes. Univ. Wisconsin Press, Madison, Wisconsin, 175 pp.

    Google Scholar 

  • Beadle, L. C., 1943. An ecological survey of some inland saline waters of Algeria. J. linn. Soc., Zool. 41: 218–242.

    Google Scholar 

  • Beers, J. R., F. M. H. Reid & G. L. Stewart, 1977. Microplankton in the central gyre of the north Pacific Ocean, Part II: Population structure and abundance, IMR Reference 77–1. Institute of Marine Resources, University of California, San Diego, La Jolla, California, USA, 481 pp.

    Google Scholar 

  • Berggreen, U., B. Hansen & T. Kiorboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99: 341–352.

    Google Scholar 

  • Bergquist, A. M., S. R. Carpenter & J. C. Latino, 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr. 30: 1037–1045.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems n in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Braarud, T., 1951. Salinity as an ecological factor in marine phytoplankton. Physiol. Plant. 4: 28–34.

    Google Scholar 

  • Braarud, T., 1962. Species distribution in marine phytoplankton. J. oceanogr. Soc. Japan, 20th Anniversary Volume: 628–649.

  • Brand, L. W., 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuar. coast. shelf Sci. 18: 543–556.

    Google Scholar 

  • Carpelan, L. H., 1957. Hydrobiology of the Alviso Salt Ponds. Ecology 38: 375–390.

    Google Scholar 

  • Carpelan, L. H., 1964. Effects of salinity on algal distribution. Ecology 45: 70–77.

    Google Scholar 

  • Carpelan, L. H., 1969. Physical characteristics of Southern California coastal lagoons. In: A. A. Castanares and F. B. Phleger (eds), Lagunas Costeras, un Simposio, Universidad Nacional Autonoma de Mexico, Mexico: 319–334.

    Google Scholar 

  • Caspers, H., 1952. Untersuchungen über die Tierwelt von Meeresalinen an der bulgarischen Küste des Schwarzen Meeres. Zool. Anz. 148: 243–259.

    Google Scholar 

  • Cole, G. A., 1983. Textbook of limnology, 3d edn. C. V. Mosby, St. Louis, Missouri.

    Google Scholar 

  • Cronin, L. E., J. C. Daiber & E. M. Hulburt, 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary. Chesapeake Sci. 3: 63–90.

    Google Scholar 

  • Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length-weight regressions. Can. J. Fish. aquat. Sci. 42: 1380–1390.

    Google Scholar 

  • Day, J. W. Jr., C. A S. Hall, W. M. Kemp & A. Yáñez Arancibia, 1989. Estuarine ecology. Wiley-Interscience, New York, New York, USA, 558 pp.

    Google Scholar 

  • Doohan, M. & V. Rainbow, 1971. Determination of dry weights of small aschelminthes (< 0.1 µg). Oecologia 6: 380–383.

    Google Scholar 

  • Doering, P. H., C. A. Oviatt, L. L. Beatty, V. F. Banzon, R. Rice, S. P. Kelly, B. K. Sullivan & J. B. Frithsen, 1989. Structure and dunction in a model coastal ecosystems: silicon, the benthos and eutrophication. Mar. Ecol. Progr. Ser. 52: 287–299.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologia 19: 75–97.

    Google Scholar 

  • Galat, D. L. & R. Robinson, 1983. Predicted effects of increasing salinity on the crustacean zooplankton community of Pyramid Lake, Nevada. Hydrobiologia 105: 115–131.

    Google Scholar 

  • Gauthier, H., 1928. Recherches sur les faune des eaux de l'Algerie et de la Tunisie. Minerva, Alger, 419 pp.

    Google Scholar 

  • Greenwald, G. M., 1985. Final report: San Dieguito Lagoon fish/plankton project. Department of Biology, San Diego State University, San Diego, California, USA. Prepared for the County of San Diego Department of Planning and Land Use, Fish and Wildlife Advisory Commission, project no. 84-25, San Diego, California, USA, 33 pp.

  • Greenwald, G. M., 1989. Effects of salinity on coastal lagoon plankton assemblages. M.S. Thesis, San Diego State University, San Diego, California, 114 pp.

    Google Scholar 

  • Greenwald, G. M. & S. L. M. Britton, 1987. Los Peñasquitos Lagoon biological monitoring program. Ecological Research Associates, Del Mar, California, USA. Prepared for the Los Peñasquitos Lagoon Foundation, San Diego, California, USA, 74 pp.

  • Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr W. Junk Publishers, Dordrecht. 616 pp.

    Google Scholar 

  • Hayward, T. L. & J. A. McGowan, 1979. Pattern and structure in an oceanic zooplankton community. Am. Zool. 19: 1045–1055.

    Google Scholar 

  • Hedgpeth, J., 1959. Some preliminary considerations of the biology of inland mineral waters. Arch. Oceanogr. Limnol. (Rome) 11 (Suppl.): 111–141.

    Google Scholar 

  • Hurlbut, E. M., 1963. The diversity of phytoplankton populations in oceanic, coastal and estuarine regions. J. mar. Res. 21: 81–93.

    Google Scholar 

  • Javor, B., 1989. Hypersaline environments: microbiology and geochemistry. Springer-Verlag, New York, 328 pp.

    Google Scholar 

  • Ketchum, B. H. (ed.), 1983. Estuaries and enclosed seas. Elsevier, New York, 500 pp.

    Google Scholar 

  • Klos, E., 1988. An experimental estuarine salinity gradient. In Proceedings of the Oceans '88 Conference, Baltimore, Maryland: 1529–1535.

  • Krumgalz, B., 1980. Salt effect on the pH of hypersaline solutions. In A. Nissenbaum (ed.), Hypersaline brines and evaporitic environments. Elsevier, New York, New York, USA: 73–83.

    Google Scholar 

  • Krylov, V. V., 1973. Relation between wet formalin weight of copepods and copepod body length. Oceanology 8: 723–727.

    Google Scholar 

  • Kudrinskaya, O. I. & L. N. Yushko, 1973. Determination of the weight/length ratio in massively growing forms of copepods in Kremunchug Reservoir. Gidrobiol. Zh. 6: 100–104.

    Google Scholar 

  • Lance, J., 1963. The salinity tolerance of some estuarine planktonic copepods. Limnol. Oceanogr. 8: 440–449.

    Google Scholar 

  • Likens, R. G. & G. E. Wetzel, 1979. Limnological Analyses. W. B. Saunders Company, Philadelphia, Pennsylvania, USA, 357 pp.

    Google Scholar 

  • Löffler, H., 1961. Beitrage zur Kenntnis der Iranischen Binnengewasser, II. Regionale-limnologische Studie mit besonderer Berucksichtigung Crustaceen fauna. Int. Revue ges. Hydrobiol. 46: 309–406.

    Google Scholar 

  • Marcus, L., 1989. The coastal wetlands of San Diego County. California State Coastal Conservancy, 65 pp.

  • Mead, R., 1988. The design of experiments. Cambridge University Press, New York, 620 pp.

    Google Scholar 

  • Melack, J. M., 1985. The ecology of Mono Lake, California. National Geographic Society Research Reports 20: 461–470.

    Google Scholar 

  • McLachlan, J., 1961. The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae. Can. J. Microbiol. 7: 399–406.

    Google Scholar 

  • Miller, J. K., 1966. Biomass determinations of selected zooplankters found in the California Cooperative Oceanic Fisheries Investigations. SIO Reference 66–15. Marine Life Research Group, Scripps Institution of Oceanography, University of California, San Diego, California, USA, 16 pp.

    Google Scholar 

  • Mudie, P. J., B. M. Browning & J. M. Speth, 1976. The natural resources of San Dieguito and Batisquitos Lagoons, Coastal Wetland Series No. 12. State of California Department of Fish and Game, Long Beach, California, USA, 128 pp.

    Google Scholar 

  • Nakanishi, M. & M. Monsi, 1965. Effect of variation in salinity on photosynthesis of phytoplankton growing in estuaries. J. Fac. Sci., Univ. Tokyo 9: 209–215.

    Google Scholar 

  • Provasoli, L., 1958. Nutrition and ecology of protozoa and algae. Ann. Rev. Microbiol. 12: 279–308.

    Article  Google Scholar 

  • Quasim, S. Z., P. M. A. Bhahattathiri & V. P. Devasy, 1972. The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton. Mar. Biol. 12: 200–206.

    Google Scholar 

  • Rawson, D. S. & J. E. Moore, 1945. The saline lakes of Saskatchewan. Can. J. Res. 22: 141–201.

    Google Scholar 

  • Remane, A. & C. Schlieper, 1971. Biology of brackish waters, 2nd edition. John Wiley & Sons, New York, 322 pp.

    Google Scholar 

  • Reynolds, J. D., 1975. Feeding of corixids (Hemiptera) in small alkaline lakes of central B.C. Verh. int. Ver. Limnol. 19: 3073–3078.

    Google Scholar 

  • Rosen, R. A., 1981. An energy budget for adult Brachionus plicatilis (Muller) (Rotatoria). Oecologia 13: 351–362.

    Google Scholar 

  • Smayda, T., 1958. Biogeographical studies of marine phytoplankton. Oikos 9: 158–191.

    Google Scholar 

  • Smayda, T. J., 1983. The phytoplankton of estuaries. In B. H. Ketchum (ed.), Ecosystems of the world 26: Estuaries and enclosed seas. Elsevier, New York: 65–102.

    Google Scholar 

  • Soto, D. & S. H. Hurlbert, 1991. Long-term experiments on calanoid-cyclopoid interactions. Ecol. Monogr. 61: 245–265.

    Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765–775.

    Google Scholar 

  • Stoecker, D. K. & N. K. Sanders, 1985. Differential grazing by Acartia tonsa on a dinoflagellate and a tintinnid. J. Plankton Res. 7: 85–100.

    Google Scholar 

  • Tanaka, N., M. Sugiyama & K. Ohwada, 1983. Ecological studies of phytoplankton In Ajo Bay with special reference to the relation between growth and salinity. Bull. Plankton Soc. Japan 30: 1–10.

  • Technicon Industrial Systems, 1973a. Ammonia in water and seawater. Industrial method no. 154–71W, Technicon Industrial Systems, Tarrytown, New York, USA, 22 pp.

    Google Scholar 

  • Technicon Industrial Systems, 1973b. Orthophosphate in water and seawater. Industrial method no. 155–71W, Technicon Industrial Systems, Tarrytown, New York, USA, 3 pp.

    Google Scholar 

  • Technicon Industrial Systems, 1977a. Individual/simultaneous determination of nitrogen and/or phosphorus in BD acid digests. Industrial method no. 329–74W/B, Technicon Industrial Systems, Tarrytown, New York, USA, 9 pp.

    Google Scholar 

  • Technicon Industrial Systems, 1977b. Nitrate and nitrite in water and seawater. Industrial method no. 158–71W, Technicon Industrial Systems, Tarrytown, New York, USA, 4 pp.

    Google Scholar 

  • Technicon Industrial Systems, 1977c. Silicates in water and seawater. Industrial method no. 186–72W/B, Technicon Industrial Systems, Tarrytown, New York, USA, 2 pp.

    Google Scholar 

  • Terada, T. & S. Ichimura, 1979. Phytoplankton photosynthesis in an eutrophic estuary with special reference to salinity gradient. La Mer 17: 171–177.

    Google Scholar 

  • Tundisi, J. & T. M. Tundisi, 1968. Planktonic studies in a mangrove environment V. Salinity tolerances of some planktonic crustaceans. Bolm Inst. Oceanogr. S. Paulo 17: 57–65.

    Google Scholar 

  • Uchima, M. & R. Hirano, 1986. Food of Oithona davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bull. Plankton Soc. Japan 33: 21–28.

    Google Scholar 

  • Williams, R. B., 1964. Division rates of salt marsh diatoms in relation to salinity and cell size. Ecology 45: 877–880.

    Google Scholar 

  • Williamson, C. E., 1983. Invertebrate predation on planktonic rotifers. Hydrobiologia 104: 383–396.

    Google Scholar 

  • Wurtsbaugh, W. A. & T. S. Berry, 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwald, G.M., Hurlbert, S.H. Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. Hydrobiologia 267, 307–335 (1993). https://doi.org/10.1007/BF00018810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018810

Key words

Navigation