Skip to main content
Log in

Work-of-fracture of brittle materials with microcracking and crack bridging

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture mechanics basis of fracture energies is considered through micromechanical phenomena in the crack tip frontal process zone, the following crack wake and crack bridging regions of brittle materials, such as cement-based materials, rocks, ceramics, and ceramic composites. The discussion is mainly focused on the work-of-fracture parameter ({ie65-1}) as a material characteristic for representing the resistance to crack extension. Theoretical considerations of the dependence of {ie65-2} on the unnotched remaining ligament length of the fracture test specimen lead to the concept of the ‘essential work-of-fracture, {ie65-3}’. The experimental results obtained for three different types of ceramic materials support the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Stoneham, Journal of American Ceramic Society 64 (1981) 54–60.

    Google Scholar 

  2. G.C. Benson and T.A. Claxton, Journal of Chemical Physics 48 (1968) 1356–1360.

    Article  Google Scholar 

  3. G.C. Benson and E. Dempsey, Proceedings of the Royal Society (London) A266 (1962) 344–358.

    Google Scholar 

  4. D.E. Parry, Surface Science 49 (1975) 433–440.

    Article  Google Scholar 

  5. Y.W. Tsang and L.M. Falicov, Physical Review B12 (1975) 2441–2447.

    Article  Google Scholar 

  6. P. Nikolopoulos, S. Nazare and F. Thummler, Journal of Nuclear Materials 71 (1977) 89–94.

    Article  Google Scholar 

  7. P.F. Becher and S.W. Freiman, Journal of Applied Physics 49 (1978) 3779–3783.

    Article  Google Scholar 

  8. P.W. Tasker, Philosophical Magazine A39 (1979) 119–136.

    Google Scholar 

  9. J.J. Gilman, Journal of Applied Physics 31 (1960) 2208–2218.

    Google Scholar 

  10. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York (1983).

    Google Scholar 

  11. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  12. G.D. Swanson, Journal of American Ceramic Society 55 (1972) 48–49.

    Google Scholar 

  13. H. Hubner and W. Jillek, Journal of Materials Science 12 (1977) 117–125.

    Google Scholar 

  14. M. Sakai, J. Yoshimura, Y. Goto and M. Inagaki, Journal of American Ceramic Society 71 (1988) 609–616.

    Google Scholar 

  15. R.F. Cook, B.R. Lawn and C.J. Fairbanks, Journal of American Ceramic Society 68 (1985) 604–615.

    Google Scholar 

  16. M. Sakai and R.C. Bradt, Journal of Ceramic Society, Japan 96 (1988) 801–809.

    Google Scholar 

  17. M. Sakai, Taikabutu Overseas 8 (1988) 4–12.

    Google Scholar 

  18. Y.W. Mai, Materials Forum 11 (1988) 232–267.

    Google Scholar 

  19. J. Nakayama, Journal of American Ceramic Society 48 (1965) 583–587.

    Google Scholar 

  20. H.G. Tattersall and G. Tappin, Journal of Materials Science 1 (1966) 296–301.

    Google Scholar 

  21. R.W. Davidge and G. Tappin, Journal of Materials Science 3 (1968) 165–173.

    Google Scholar 

  22. A.G. Atkins and Y.W. Mai, Elastic and Plstic Fracture, Ellis Horwood, Chichester (1985).

    Google Scholar 

  23. Special issue of Fracture and Damage of Concrete and Rock, Engineering Fracture Mechanics 35 (1990) 1–927.

    Google Scholar 

  24. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

  25. S.J. Burns and M.V. Swain, Journal of American Ceramic Society 69 (1986) 226–230.

    Google Scholar 

  26. B. Cotterell, E. Lee and Y.W. Mai, International Journal of Fracture 20 (1982) 243–250.

    Google Scholar 

  27. Y.W. Mai and B. Cotterell, International Journal of Fracture 24 (1984) 229–236.

    Google Scholar 

  28. Y.W. Mai and B. Cotterell, Engineering Fracture Mechanics 21 (1985) 123–128.

    Article  Google Scholar 

  29. Y.W. Mai and B. Cotterell, International Journal of Fracture 32 (1986) 105–125.

    Google Scholar 

  30. M. Sakai and O. Shinkai, Proceedings of the Second International Conference on Refractories, Vol. 2, The Technical Association of Refractories, Tokyo (1987) 869–880.

    Google Scholar 

  31. M. Sakai, K. Urashima and M. Inagaki, Journal of American Ceramic Society 66 (1983) 868–874.

    Google Scholar 

  32. M. Sakai and R.C. Bradt, Fracture Mechanics of Ceramics, Vol. 7, R.C. Bradt, A.G. Evans, F.F. Lange, and D.P.H. Hasselman (eds.), Plenum, New York (1986) 127–142.

    Google Scholar 

  33. ASTM Standard E399-83, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia (1983).

  34. J. Homeny, T. Darroud and R.C. Bradt, Journal of American Ceramic Society 63 (1980) 326–331.

    Google Scholar 

  35. M. Sakai and K. Yamasaki, Journal of American Ceramic Society 66 (1983) 371–375.

    Google Scholar 

  36. F.H. Wittmann, H. Mihashi and N. Nomura, Engineering Fracture Mechanics 35 (1990) 107–115.

    Article  Google Scholar 

  37. M. Sakai, H. Ichikawa and H. Shinohara, presented at the 3rd Annual Colloquium of TARJ, December 6–7, 1990, Kyushu, Japan.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, M., Ichikawa, H. Work-of-fracture of brittle materials with microcracking and crack bridging. Int J Fract 55, 65–79 (1992). https://doi.org/10.1007/BF00018033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018033

Keywords

Navigation