Skip to main content
Log in

Some basic problems in stress wave dominated fracture

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Problems of characterizing the stress wave induced stress field around the crack tip and ensuing crack propagation behavior are described. After stating the assumptions underlying an idealized model of brittle, dynamic fracture we review experimentally observed deviations from such idealized behavior. Such deviations are ascribed to the development of numerous microcracks in the crack tip region. These microcracks determine the crack initiation process, the speed of crack growth and the branching phenomenon. Also we examine critically the contention that there exists a unique relation which links instantaneous crack speed to the instantaneous stress intensity factor in brittle solids. That question highes materially on limitations of current measurement techniques.

Résumé

On décrit les problèmes de caractérisation du champ de contrainte induit autour de l'extrémité de l'entaille par une onde de tension et les conséquences qui en résultent sur le comportement à la propagation d'une fissure. Après avoir posé les hypothèses soujacentes à un modèle idéal de rupture fragile et dynamique, on passe en revue les déviations observées par voie expérimentale à partir d'un tel modèle. Ces déviations sont attribuées au développement de nombreuses microfissures dans la région de l'extrémité de la fissure. Ces microfissures déterminent un processus d'amorçage de fissure, une vitesse de croissance de la fissure et un phénomène d'arborescence. On examine également de manière critique l'assertion selon laquelle il existe une relation unique qui relie la vitesse instantaneée de la fissure au facteur d'intensité d'entaille instantané dans des solides fragiles. La solution à cette question est matériellement gènée par des limitations dans les techniques de mesure habituelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hopkinson, Original Papers, Cambridge University Press (1901) 316–320.

  2. B. Hopkinson, Scientific Papers (1912) 461.

  3. K.B. Broberg, Journal of Applied Mechanics 22 (1955) 317–323.

    Google Scholar 

  4. H. Kolsky and D.G. Christie, Transactions, Society of Glass Technology 36T (1952) 88.

    Google Scholar 

  5. D.R. Curran, D.A. Shockey, and L. Seaman, Journal of Applied Physics 44 (1973) 4025.

    Google Scholar 

  6. S.N. Zhurkov and V.S. Kuksenko, International Journal of Fracture 11 (1975) 629–639.

    Google Scholar 

  7. D.A. Shockey, L. Seaman and D.R. Curran, International Journal of Fracture 27 (1985) 145–157.

    Google Scholar 

  8. J.D. Achenbach, in Mechanics Today 3. Edited by Nemat-Nasser, Pergamon Press (1974) 1.

  9. L.B. Freund, in Mechanics Today 3. Edited by Nemat-Nasser, (1976) 55–90.

  10. C. Atkinson and J. Eshelby, International Journal of Fracture 4 (1968) 3–8.

    Google Scholar 

  11. L.B. Freund, Journal of Elasticity 2 (1972) 341.

    Google Scholar 

  12. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture I: 25 (1984) 247–262; II: 26 (1984) 65–80; III: 141–154; IV: 193–204.

    Google Scholar 

  13. L.R.F. Rose, International Journal of Fracture 12 (1976) 799–813.

    Google Scholar 

  14. J.D. Eshelby, in Inelastic Behavior of Solids. Edited by Kanninen et al McGraw-Hill, New York (1970) 111.

    Google Scholar 

  15. A.A. Wells and D. Post, Proceedings, SESA 16 (1958) 69.

    Google Scholar 

  16. W.M. Beebe, Ph.D. Thesis, California Institute of Technology (1966).

  17. J.F. Kalthoff, International Journal of Fracture 27 (1985) 277–297.

    Google Scholar 

  18. M.L. Kanninen, International Journal of Fracture 27 (1985) 299–312.

    Google Scholar 

  19. E. Yoffe, Philosophical Magazine 42 (1951) 739.

    Google Scholar 

  20. A.W. Maue, Zeitschrift fur Angewandte Mathematik und Mechanik 34 (1954) 1.

    Google Scholar 

  21. D.D. Ang, Ph.D. Thesis, California Institute of Technology (1958).

  22. A.T. De Hoop, Doctoral Dissertation, Technische Hogeschool, Delft (1958).

  23. K.B. Broberg, Arkiv. fur Physik 18 (1960) 159.

    Google Scholar 

  24. J.W. Craggs, Journal of Mechanics and Physics of Solids 8 (1960) 66.

    Google Scholar 

  25. B.R. Baker, Journal of Applied Mechanics 29 (1962) 449.

    Google Scholar 

  26. P.B. Crosley and E.J. Ripling, Journal of Basic Engineering 91 (1969) 525–534.

    Google Scholar 

  27. L.B. Freund, Journal of Mechanics and Physics of Solids 21 (1973) 47.

    Google Scholar 

  28. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 20 (1982) 209–222.

    Google Scholar 

  29. C.C. Ma and L.B. Freund, Brown University Report (September 1984).

  30. K. Ravi-Chandar, and W.G. Knauss, SM Report 84–18, California Institute of Technology (1984).

  31. J.W. Dally, W.L. Fourney and G.R. Irwin, International Journal of Fracture 27 (1985) 159–168.

    Google Scholar 

  32. A.J. Rosakis and K. Ravi-Chandar, Galcit SM Report 84–2, California Institute of Technology (March 1984).

  33. J.G. Williams and J.M. Hodgkinson, Proceedings, Royal Society of London A 375 (1981) 231–248.

    Google Scholar 

  34. W.G. Knauss, inProceedings, Sixth International Conference on Fracture, S.R. Valluri et al. (editors) New Delhi, India, December 1984, Pergamon Press.

    Google Scholar 

  35. D.A. Schockey, J.F. Kalthoff, H. Homma and D.C. Erlich in Proceedings, Workshop on Dynamic Fracture, California Institute of Technology, Pasadena, CA (Feb. 1983) 57–71.

    Google Scholar 

  36. H. Schardin, in Fracture. Edited by Averbach et al., Technology Press MIT, John Wiley & Sons and Chapman & Hall (1959).

  37. W.B. Bradley and A.S. Kobayashi, Engineering Fracture Mechanics 3 (1971) 317.

    Google Scholar 

  38. J.F. Kalthoff, in Proceedings, Workshop on Dynamic Fracture, California Institute of Technology (1983) 11–35.

  39. T. Kobayashi and J.T. Metcalf, in Crack Arrest Methodology and Application, ASTM STP 711 (1980) 128.

  40. J.W. Dally and A. Shukla, Mechanics Research Communication 6 (1979) 239.

    Google Scholar 

  41. J.E. Field, Contemporary Physics 12 (1972) 1.

    Google Scholar 

  42. J. Congleton et al., Philosophical Magazine 16 (1967) 749.

    Google Scholar 

  43. J. . Pucik, Ph.D. Thesis, California Institute of Technology (1972).

  44. J. Carlsson, in Transactions of the Royal Institute of Technology, Stockholm; (a) Vol. 189 (1962) 2–55; (b) Vol. 205 (1963) 3–38; (c) Vol. 207 (1963) 3–26.

  45. J.W. Dally, Experimental Mechanics 19 (1979) 349.

    Google Scholar 

  46. J.P. Dempsey and P. Burgers, International Journal of Fracture 27 (1985) 203–213.

    Google Scholar 

  47. M. Ramulu and A.S. Kobayashi, International Journal of Fracture 27 (1985) 187–201.

    Google Scholar 

  48. B. Cotterell and J.R. Rice, International Journal of Fracture 16 (1980) 155–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauss, W.G., Ravi-Chandar, K. Some basic problems in stress wave dominated fracture. Int J Fract 27, 127–143 (1985). https://doi.org/10.1007/BF00017963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017963

Keywords

Navigation