Skip to main content
Log in

Decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and Cattail (Typha spp.) in fourteen Minnesota wetlands

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Purple Loosestrife is rapidly displacing native vegetation in North American wetlands. Associated changes in wetland plant communities are well understood. Effects of Loosestrife invasion on nutrient cycling and decomposition rates in affected wetlands are unknown, though potentially of significance to wetland function. We used litter bag methods to quantify decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and native cattails (Typha spp.) in fourteen Minnesota wetlands. A 170-day study that began in autumn modeled decomposition of Loosestrife leaves. Loosestrife stems andTypha shoots that had overwintered and fragmented were measured in a 280- day study that began in spring. In general, Loosestrife leaves decomposed most rapidly of the three;Typha shoots decomposed faster than Loosestrife stems. Significant decay coefficients (k-values) were determined by F-testing single exponential model regressions of different vegetation types in the fourteen wetlands. Significant decay coefficients were:k = 2.5 × 10−3 and 4.32 × 10−3 for all Loosestrife leaves (170 d);k = 7.2 × 10−4 and 1.11 × 10−3 for overwintered Loosestrife stems (280-d) andk = 7.9 × 10−4, 1.42 × 10−3 and 2.24 × 10−3 for overwinteredTypha shoots (280-d). Phosphorus concentrations of plant tissue showed an initial leaching followed by stabilization or increase probably associated with microbial growth. Loosestrife leaves had twice the phosphorus concentration of Loosestrife stems andTypha shoots. Our results indicate that conversion of wetland vegetation from cattails to Loosestrife may result in significant change in wetland function by altering timing of litter input and downstream phosphorus loads. Conversion of a riverine, flow- through wetland fromTypha to Loosestrife may effectively accelerate eutrophication of downstream water bodies. Impacts of Loosestrife invasion must be considered when wetlands are managed for wildlife or for improvement of downstream water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. O. & P. D. Ascher, 1993. Male and female fertility of Loosestrife (Lythrum) cultivars. J. Am. Soc. for Hort. Sci. 118: 851–858.

    Google Scholar 

  • Boyd, C. E., 1970. Losses of mineral nutrients during decomposition ofTypha Latifolia. Arch. Hydrobiologia 66: 511–517.

    Google Scholar 

  • Brinson, M. M., A. E. Lugo & S. Brown, 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. 12: 123–161.

    Article  Google Scholar 

  • Brown, R. G., 1985. Effects of an urban wetland on sediments and nutrient loads in runoff. Wetlands 4: 147–158.

    Google Scholar 

  • Chapman, H. D. & P. F. Pratt, 1961. Methods of analysis for soils, plants, and water. Agric. Publ. Univ. of Calif., Riverside, 309 pp.

    Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet & E. T. LaRoe, 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish Wildl. Serv., Washington, D.C., 103 pp.

    Google Scholar 

  • Davis, C. B. & A. G. van der Valk, 1978a. The decomposition of standing and fallen litter ofTypha glauca andScirpus fluviatilis. Can. J. Bot. 56: 662–675.

    CAS  Google Scholar 

  • Davis, C. B. & A. G. van der Valk, 1978b. Litter decomposition in prairie glacial marshes. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 99–113.

    Google Scholar 

  • Davis, C. B. & A. G. van der Valk, 1983. Uptake and release of nutrients by living and decomposingTypha glauca Godr. tissues at Eagle Lake, Iowa. Aquat. Bot. 16: 75–89.

    Article  CAS  Google Scholar 

  • Gallagher, J. L., 1978. Decomposition processes: summary and recommendations. In R. E. Good, D. F. Wigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 145–151.

    Google Scholar 

  • Hill, B. H., 1985. The breakdown of macrophytes in a reservoir wetland. Aquat. Bot. 21: 23–31.

    Article  Google Scholar 

  • Jenny, H., S. P. Gessel & F. T. Bingham, 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci. 68: 419–432.

    CAS  Google Scholar 

  • John, M. K., 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 109: 214–220.

    CAS  Google Scholar 

  • Lee, G. F., E. Bentley & R. Amundson, 1975. Effects of marshes on water quality systems. In A. D. Hasler (ed.), Coupling of land and water systems. Springer-Verlag. New York: 105–127.

    Google Scholar 

  • Mason, C. F. & R. J. Bryant, 1975. Production, nutrient content and decomposition ofPhragmites communis Trin. andTypha angustifolia L. J. Ecol. 63: 71–95.

    Article  CAS  Google Scholar 

  • Murkin, H. R., A. G. van der Valk & C. B. Davis, 1989. Decomposition of four dominant macrophytes in the Delta Marsh, Manitoba. Wildl. Soc. Bull. 17: 215–221.

    Google Scholar 

  • Nelson, J. W., J. A. Kadlec & H. R. Murkin, 1990. Seasonal comparison of weight loss for two types ofTypha glauca Godr. leaf litter. Aquat. Bot. 37: 299–314.

    Article  Google Scholar 

  • Payne, G. A., M. A. Ayers & R. G. Brown, 1982. Quality of runoff from small watersheds in Twin Cities metropolitan areas, Minnesota — hydrologic data for 1980. U.S.G.S. Open File Report (82–504), St. Paul, Minnesota 289 pp.

  • Petersen, R. C. & K. W. Cummins, 1974. Heat processing in woodland streams. Freshwat. Biol. 4: 343–368.

    Article  Google Scholar 

  • Puriveth, P., 1980. Decomposition of emergent macrophytes in a Wisconsin marsh. Hydrobiologia 72: 231–242.

    Article  CAS  Google Scholar 

  • Rawinski, T. J. & R. A. Malecki, 1984. Ecological relationships among purple Loosestrife, cattail and wildlife at Montezuma National Wildlife Refuge. New York Fish and Game Journal 31: 81–87.

    Google Scholar 

  • Rodgers, J. H., M. E. McKevitt, D. O. Hammerlund, K. L. Dicksin & J. Cairns Jr., 1983. Primary productivity and decomposition of submergent and emergent aquatic plants of two Appalachian rivers. In T. D. Fontaine & S. M. Bartell (eds), Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor Michigan: 283–301.

    Google Scholar 

  • Shamsi, S. R. A. & F. H. Whitehead, 1974. Comparative ecophysiology ofEpilobium hirsutum L. andLythrum salicaria L. II. Growth and develomment in relation to light. J. Ecol. 62: 631–645.

    Article  Google Scholar 

  • Shaw, S. & C. G. Fredine, 1971. Wetlands of the United States-Circular 39. U.S. Dept. of the Interior, Fish and Wildlife Service, St. Petersberg, 67 pp.

    Google Scholar 

  • Sloey, W. E., F. L. Spangler & C. W. Fetter, Jr., 1978. Management of freshwater wetlands for nutrient assimilation. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 321–340.

    Google Scholar 

  • Thompson, D. Q., R. L. Stuckey & E. B. Thompson, 1987. Spread, impact, and control of purple Loosestrife (Lythrum salicaria) in North American wetlands. U.S. Fish Wildl. Serv., Washington, D.C., 55 pp.

    Google Scholar 

  • Thompson, D. Q., 1991. History of purple Loosestrife (Lythrum salicaria L.) biologicalm control efforts. Nat. Areas J. 11: 148–150.

    Google Scholar 

  • van der Valk, A. G., J. M. Rhymer & H. R. Murkin, 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11: 1–16.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17: 567–594.

    Article  Google Scholar 

  • Wieder, R. K. & G. E. Lang, 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. J. Ecol. 63: 1636–1642.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emery, S.L., Perry, J.A. Decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and Cattail (Typha spp.) in fourteen Minnesota wetlands. Hydrobiologia 323, 129–138 (1996). https://doi.org/10.1007/BF00017590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017590

Key words

Navigation