Skip to main content
Log in

Variation in torpidity of diapause in freshwater cyclopoid copepods

  • Physiology of Diapause
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

By successively filtering off animals emerging from mud cores taken to the laboratory, the degree of torpidity within the same species was found to vary considerably both time and space. Variation in time from the start of dormancy follows a pattern of diapause development similar to that of insect diapause. In some localities dormancy is deep and prolonged, while in others it is less pronounced and lasts for a shorter period. The depth of torpidity during winter seems to be correlated to an induction early in the year. The intensity of diapause varies along the slope of the localities and down into the bottom mud. In some cases high temperatures seem to induce a deeper torpidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrewartha, H. G., 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27: 50–107.

    Google Scholar 

  • Danks, H. V., 1987. Insect dormancy: an ecological perspective. Biol. Surv. Canada Monogr. Ser. 1: 1–439.

    Google Scholar 

  • Elgmork, K., 1959. Seasonal occurence of Cyclops strenuus strenuus in relation to environment in small water bodies in southern Norway. Folia limnol. scand. 11: 1–196.

    Google Scholar 

  • Elgmork, K., 1962. A bottom resting stage in planktonic freshwater copepod Cyclops scutifer Sars. Oikos 13: 306–310.

    Google Scholar 

  • Elgmork, K., 1964. Dynamics of zooplankton communities in some small inundated ponds. Folia Limnol. Scand. 12: 1–83.

    Google Scholar 

  • Elgmork, K., 1967a. Ecological aspects of diapause in copepods. Proc. Symp. Crust. 3: 947–954.

    Google Scholar 

  • Elgmork, K., 1967b. On the distribution and ecology of Cyclops scutifer Sars in New England (Copepoda, Crustacea). Ecology 48: 967–971.

    Google Scholar 

  • Elgmork, K., 1973. Bottom resting stages of planktonic cyclopoid copepods in meromictic lakes. Verh. int. Ver. Limnol. 18: 1474–1478.

    Google Scholar 

  • Elgmork, K., 1980. Evolutionary aspects of diapause in freshwater copepods. In Kerfoot, W. C. (ed.), Evol. Ecol. Zooplankton Comm., Univ. Press New England. pp. 411–417.

    Google Scholar 

  • Elgmork, K., 1981. Extraordinary prolongation of the life cycle in a freshwater planktonic copepod. Holarct. Ecol. 4: 278–290.

    Google Scholar 

  • Elgmork, K., 1991. Winter reproduction strategies in freshwater cyclopoids. Verh. int. Ver. Limnol. 24: 2844–2846.

    Google Scholar 

  • Elgmork, K. & G. Halvorsen, 1976. Body size of free-living copepods. Oikos 27: 27–33.

    Google Scholar 

  • Elgmork, K. & J. P. Nilssen, 1978. Equivalence of copepod and insect diapause. Verh. int. Ver. Limnol. 20: 2511–2517.

    Google Scholar 

  • Elgmork, K. & A. Langeland, 1980. Cyclops scutifer Sars — one and two-year life cycles with diapause in the meromictic lake Blankvatn. Arch. Hydrobiol. 88: 178–201.

    Google Scholar 

  • Elgmork, K., G. Halvorsen, J. A. Eie & A. Langeland, 1990. Coexistence with similar life cycles in two species of freshwater copepods (Crustacea). Hydrobiologia 208: 187–199.

    Google Scholar 

  • Kjensmo, J., 1967. The development and some main features of “iron-meromictic” soft water lakes. Arch. Hydrobiol. Suppl. 32: 137–312.

    Google Scholar 

  • Kjensmo, J., 1968. The primary production and its influence on the meromictic stability in Lake Svinsjøen. Schweiz. Z. Hydrol. 30: 297–317.

    Google Scholar 

  • Larsson, P., 1971. Vertical distribution of planktonic rotifers in a meromictic lake, Blankvatn near Oslo, Norway. Norw. J. Zool. 19: 47–75.

    Google Scholar 

  • Mansingh, A., 1971. Physiological classification of dormancies in insects. Can. Ent. 103: 983–1009.

    Google Scholar 

  • Matzow, D. (ed.), 1976. Investigations of freshwater biology in Lønavatn lake and Strandaelva river. Voss Project 1: 1–235. Zool. Inst. Univ. Oslo. (Mimeogr. In Norwegian with English summary.)

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147–201.

    Google Scholar 

  • Nilssen, J.P., 1977. Cryptic predation and the demographic strategy of two limnetic cyclopoid copepods. Mem. 1st. Ital. Idrobiol. 34: 187–196.

    Google Scholar 

  • Nilssen, J. P. & K. Elgmork, 1977. Cyclops abyssorum — Life cycle dynamics and habitat selection. Mem. 1st. ital. Idrobiol. 34: 197–238.

    Google Scholar 

  • Strøm, K. & H. Østtveit, 1948. Blankvatn. A meromictic lake near Oslo. Skr. norske Vidensk.-Akad. mat.-nat. kl. 1: 1–41.

    Google Scholar 

  • Tauber, M.J., C. Tauber & S. Masaki, 1986. Seasonal adaptations of insects. Oxford University Press, New York, Oxford 411 pp.

    Google Scholar 

  • Wyngaard, G. A., 1988. Geographical variation in dormancy in a copepod: evidence from population crosses. Hydrobiologia 167/168 (Dev. Hydrobiol. 47): 367–374.

    Google Scholar 

  • Zaslavski, V.A., 1988. Insect development. Photoperiodic and temperature control. Springer-Verlag, Berlin, Heidelberg, New York, 187 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elgmork, K. Variation in torpidity of diapause in freshwater cyclopoid copepods. Hydrobiologia 320, 63–70 (1996). https://doi.org/10.1007/BF00016805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016805

Key words

Navigation