Skip to main content
Log in

Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of short-term fluctuations in river discharge simulating a hydroelectricity peaking regime on the hydrogeological environment of the brook trout's reproductive habitats were examined. Fluctuating river levels altered shallow (≤ 2.5 m) groundwater pathways, chemistry, and flow potentials within the river bed at spawning and incubation sites. Rising river levels introduced river water into the bank where various degrees of mixing with groundwater occurred. Subsequent recessions of river levels increased the potentials for groundwater flow, particular in an offshore direction. The character of the river water — groundwater interaction appeared to be related to the hydrogeological nature of the river channel and adjacent catchment which varied among sites. The observations suggested hydroelectricity peaking regimes have potential negative impacts on brook trout reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bain, M. B., J. T. Finn & H. E. Booke, 1988. Streamflow regulation and fish community structure. Ecology 69: 382–392.

    Google Scholar 

  • Becker, C. D., D. A. Neitzel & C. S. Abernethy, 1983. Effects of dewatering on chinook salmon redds: Tolerance of four developmental phases to one-time dewatering. N. Am. J. Fish. Mgmt. 3: 373–382.

    Article  Google Scholar 

  • Brick, C., 1986. A model of groundwater response to reservoir management and the implications for kokanee salmon spawning, Flathead Lake, Montana. M. Sc. Thesis, University of Montana.

  • Burt, D. W. & J. H. Mundie, 1986. Case histories of regulated stream flow and its effects on salmonid populations. Can. Tech. Rep. Fish. aquat. Sci. 1477: 98 pp.

    Google Scholar 

  • Curry, R. A., P. M. Powles, V. A. Liimatainen & J. M. Gunn, 1991. Emergence chronology of brook charr, Salvelinus fontinalis, alevins in an acidic stream. Envir. Biol. Fish. 31: 25–31.

    Google Scholar 

  • Elliott, J. M., 1989. Mechanisms responsible for population regulation in young migratory trout, Salmo trutta. I. The critical time for survival. J. anim. Ecol. 58: 987–1001.

    Google Scholar 

  • Fraser, J. M., 1982. An atypical brook charr (Salvelinus fontinalis) spawning area. Envir. Biol. Fish. 7: 385–388.

    Google Scholar 

  • Fraser, J. M., 1985. Shoal spawning of brook trout, Salvelinus fontinalis, in a Precambrian Shield lake. Nat. can. 112: 163–174.

    Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater, New Jersey: Prentice-Hall Inc.

    Google Scholar 

  • Gilbert, N., 1989. Biometrical Interpretation. Making Sense of Statistics in Biology. Second Edition, New York: Oxford University Press.

    Google Scholar 

  • Godbout, L. & H. B. N. Hynes, 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.

    Google Scholar 

  • Gunn, J. M., 1986. Behaviour and ecology of salmonid fishes exposed to episodic pH depressions. Envir. Biol. Fish. 17: 241–252.

    Google Scholar 

  • Hoar, W. S. & D. J. Randall (eds), 1969. Fish Physiology. Vol. 1, New York: Academic Press Inc.

    Google Scholar 

  • Hvorslev, M. J., 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36. Vicksburg, VA.

  • Lee, D. R. & J. A. Cherry, 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Ed. 27: 6–10.

    Google Scholar 

  • Ontario Ministry of the Environment, 1988. Acid Precipitation in Ontario Study — Annual Statistics of Concentration and Deposition — Cumulative Precipitation Monitoring Network, 1983–1988.

  • Pfannkuch, H. D. & T. C. Winter, 1984. Effect of anisotropy and groundwater system geometry on seepage through lakebeds. J. Hydrol. 75: 213–237.

    Article  Google Scholar 

  • Power, G., 1980. The brook charr, in E. K. Balon (ed.), Charrs, Salmonid Fishes of the Genus Salvelinus: Dr W. Junk Publishers, The Hague: 141–203.

    Google Scholar 

  • Reiser, D. W. & T. A. Wesche, 1977. Determination of physical and hydraulic preferences of brown and brook trout in the selection of spawning locations, U.S. Dept. Interior, Water Resources Series No. 64.

  • Reiser, D. W. & R. G. White, 1983. Effects of complete redd dewatering on salmonid egg-hatching success and development of juveniles. Trans. am. Fish. Soc. 112: 532–540.

    Article  Google Scholar 

  • SAS Institute Inc., 1985. SAS/STAT User's Guide, Version 6, Fourth Edition. Cary, NC.

  • Scott, W. B. & E. J. Crossman, 1979. Freshwater Fishes of Canada. Bulletin 184, Fisheries Research Board of Canada: Ottawa.

    Google Scholar 

  • Silver, S. J., C. E. Warren & P. Doudoroff, 1963. Dissolved oxygen requirements of developing steelhead trout and chinook salmon embryos at different water velocities. Trans. am. Fish. Soc. 92: 327–343.

    Google Scholar 

  • Smith, A. K., 1973. Development and application of spawning velocity and depth criteria for Oregon salmonids. Trans. am. Fish. Soc. 102: 312–316.

    Article  Google Scholar 

  • Snucins, E. J., R. A. Curry & J. M. Gunn, 1992. Embryo habitat and timing of alevin emergence of a lake-dwelling brook trout (Salvelinus fontinalis) population. Can. J. Zool. 70: 423–427.

    Google Scholar 

  • Sowden, T. K. & G. Power, 1985. Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrate. Trans. am. Fish. Soc. 114: 804–812.

    Article  Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic process. Ecology 70: 1873–1905.

    Google Scholar 

  • Vaux, W. G., 1968. Intragravel flow and interchange of water in a streambed. U.S. Fish Wildl. Serv., Fish. Bull. 66: 479–489.

    Google Scholar 

  • Vervier, P., J. Gilbert, P. Marmonier & M.-J. Dole-Olivier, 1992. A perspective on the permeability of the surface freshwatergroundwater ecotone. J. N. Am. Benthol. Soc. 11: 93–102.

    Google Scholar 

  • White, D. S., 1990. Biological relationships to convective flow patterns within stream beds. Hydrobiology 196: 149–158.

    Google Scholar 

  • Winter, T. C., 1974. Numerical simulation analysis of the interaction of lakes and groundwater. U.S.G.S., Geol. Surv. Prof. Paper 1001.

  • Young, M. K., W. A. Hubert & T. A. Wesche, 1989. Substrate alteration by spawning brook trout in a southeastern Wyoming stream. Trans. am. Fish, Soc. 118: 379–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, R.A., Gehrels, J., Noakes, D.L.G. et al. Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats. Hydrobiologia 277, 121–134 (1994). https://doi.org/10.1007/BF00016759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016759

Key words

Navigation