Skip to main content
Log in

Statistical approach to delayed failure of brittle materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Delayed failure tests or static fatigue tests were performed on soda-lime glass in water environment. Testing consisted of four-point bend and three-point bend with constant load. The time-to-failure and fracture location of specimens were measured.

The theory of stochastic process is combined with the extreme value distribution in stress and the time dependent probability distribution function is obtained to predict the time-to-failure of specimens as well as the location of fracture.

It is shown that the theoretical prediction is in good agreement with the experimental data.

Résumé

Des essais de rupture différée ou essais de fatigue statique ont été exécutés sur un verre calcique sodé dans un environnement d'eau. Les essais consistaient en une flexion en quatre points et en une flexion en trois points à charge constante. On a mesuré le temps à la rupture et la localisation de la rupture sur les éprouvettes.

En combinant la théorie du processus stochastique avec la distribution aux valeurs extrèmes de la contrainte et de la fonction de distribution de la probabilité de rupture en fonction du temps, on a pu prédire le temps à la rupture des éprouvettes ainsi que la localisation de la rupture.

On montre que la prédiction théorique est en bon accord avec les données expérimentales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yokobori, Fundamentals and Methodologies of Fracture, Japanese Edition, Iwanami (1974) 161–218.

  2. Y. Nishimatsu, The 12th Japan Congress on Material Research (1969) 240–243.

  3. R.W. Davidge, J.R. McLaren and G. Tappin, Journal of Materials Science, 8 (1973) 1699–1705.

    Google Scholar 

  4. A.G. Evans and S.M. Wiederhorn, International Journal of Fracture, 10 (1974) 379–392.

    Google Scholar 

  5. D.F. Jacobs and J.E. RitterJr., Journal of the American Ceramic Society, 59 (1976) 481–487.

    Google Scholar 

  6. S.M. Wiederhorn, E.R. Fuller, J. Mandel and A.G. Evans, Journal of the American Ceramic Society, 59 (1976) 403–411.

    Google Scholar 

  7. A.M. Freudenthal, Fracture, Academic Press, 2 (1968) 591–619.

  8. S.B. Batdorf, Fracture Mechanics of Ceramics, 3 (1978) 1–30.

    Google Scholar 

  9. H.L. Oh and I. Finnie, International Journal of Fracture, 6 (1970) 287–300.

    Google Scholar 

  10. E.J. Gumbel, Statistics of Extremes, Columbia University Press (1958).

  11. M.C. Shaw, P.M. Braiden and G.J. DeSalvo, Transactions ASME, Series B (Journal of Engineering Ind.) 98 (1976) 206–210.

    Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons (1957).

  13. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, S., Sakata, M. Statistical approach to delayed failure of brittle materials. Int J Fract 16, 459–469 (1980). https://doi.org/10.1007/BF00016584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016584

Keywords

Navigation