Skip to main content
Log in

Sequence conservation among the glucose transporter from the cyanobacterium Synechocystis sp. PCC 6803 and mammalian glucose transporters

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Synechocystis sp. PCC 6803 is capable of facultative photoheterotrophy with glucose as the sole carbon source. Eight mutants that were unable to take up glucose were transformed with plasmids from pooled gene banks of wild-type Synechocystis DNA prepared in an Escherichia coli vector that does not replicate in Synechocystis. One mutant (EG216) could be complemented with all gene banks to restore ability for photoheterotrophic growth. One of the gene banks was fractionated into single clones and plasmid DNA from each clone used to complement EG216. This yielded a 1.5 kb DNA fragment that was sequenced. It contained one complete open reading frame (gtr) whose putative gene product displayed high sequence conservation with the xylose transporter of E. coli and the mammalian glucose transporters. Further, the isolated gtr gene interrupted in vitro by a kanamycin resistance cassette could be used to construct mutants from wild-type Synechocystis sp. PCC 6803 that lacked a functional glucose transporter, thus confirming the identity of the gtr gene with the glucose transporter gene. This is the first prokaryotic glucose transporter known to share a sequence relationship with mammalian glucose transporters and the first sugar transporter from a cyanobacterium characterized at the sequence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano T, Shibasaki Y, Kasuga M, Kanazawa Y, Takaku F, Akanuma Y, Oka Y: Cloning of a rabbit brain glucose transporter cDNA and alteration of glucose transporter mRNA during tissue development. Biochem Biophys Res Comm 154: 1204–1211 (1988).

    PubMed  Google Scholar 

  2. Beauclerk ADD, Smith AD: Transport of D-glucose and 3-O-methyl glucose in the cyanobacteria Aphanocapsa 6714 and Nostoc Mac. Eur J Biochem 82: 187–197 (1978).

    PubMed  Google Scholar 

  3. Birnbaum MJ, Haspel HC, Rosen OM: Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci USA 83: 5784–5788 (1986).

    PubMed  Google Scholar 

  4. Boyer HW, Rouilland-Dussoix D: A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41: 459–472 (1969).

    Article  PubMed  Google Scholar 

  5. BRL: BRL pUC host: E. coli DH5α competent cells. Focus 8(2): 9 (1986).

    Google Scholar 

  6. Celenza JL, Marshal-Carlson L, Carlson M: The SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85: 2130–2134 (1988).

    PubMed  Google Scholar 

  7. Davis EO, Henderson PJF: The cloning and DNA sequence of the gene xyl E for xylose-proton symport in Escherichia coli K12. J Biol Chem 262: 13928–13932 (1987).

    PubMed  Google Scholar 

  8. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  9. Elhai J, Wolk CP: A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68: 119–138 (1988).

    Article  PubMed  Google Scholar 

  10. Erni B, Zanolari B: Glucose-permease of the bacterial phosphotransferase system. J Biol Chem 261: 16398–16403 (1986).

    PubMed  Google Scholar 

  11. Flores E, Schmetterer G: Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 166: 693–696 (1986).

    PubMed  Google Scholar 

  12. Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, Byers MG, Shows TB, Bell GI: Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci USA 85: 5434–5438 (1988).

    PubMed  Google Scholar 

  13. Golden SS, Stearns GW: Nucleotide sequence and transcript analysis of three photosystem II genes from the cyanobacterium Synechococcus sp. PCC7942. Gene 67: 85–96 (1988).

    Article  PubMed  Google Scholar 

  14. Grigorieva G, Shestakov S: Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Mircobiol Lett 13: 367–370 (1982).

    Article  Google Scholar 

  15. Hediger M, Coady MJ, Ikeda TS, Wright EM: Expression, cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 338: 83–87 (1987).

    Google Scholar 

  16. James DE, Strube M, Mueckler M: Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338: 83–87 (1989).

    Article  PubMed  Google Scholar 

  17. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    PubMed  Google Scholar 

  18. Maiden MCJ, Davis EO, Baldwin SA, Moore DCM, Henderson PJF: Mammalian and bacterial sugar transport proteins are homologous. Nature 325: 641–643 (1987).

    Article  PubMed  Google Scholar 

  19. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  20. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF: Sequence and structure of a human glucose transporter. Science 229: 941–945 (1985).

    PubMed  Google Scholar 

  21. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453 (1970).

    PubMed  Google Scholar 

  22. Omata T, Murata N: Isolation and characterization of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 24: 1101–1112 (1983).

    Google Scholar 

  23. Osiewacz HD, McIntosch L: Nucleotide sequence of a member of the psbA multigene family from the unicellular cyanobacterium Synechocystis 6803. Nucl Acids Res 15: 10585 (1987).

    PubMed  Google Scholar 

  24. Raboy B, Padan E: Active transport of glucose and α-methyl-glucoside in the cyanobacterium Plectonema boryanum. J Biol Chem 253: 3287–3291 (1978).

    PubMed  Google Scholar 

  25. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61 (1979).

    Google Scholar 

  26. Saier MHJr: Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53: 109–120 (1989).

    PubMed  Google Scholar 

  27. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  28. Sasatsu M, Misra TK, Chu L, Laddaga R, Silver S: Cloning and DNA sequence of a plasmid-determined citrate utilization system in Escherichia coli. J Bacteriol 164: 983–993 (1985).

    PubMed  Google Scholar 

  29. Schmetterer G, Flores E: Uptake of fructose by the cyanobacterium Nostoc sp. ATCC 29150. Biochim Biophys Acta 942: 33–37 (1988).

    Google Scholar 

  30. Shine J, Dalgarno L: the 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346 (1974).

    PubMed  Google Scholar 

  31. Szkutnicka K, Tschopp JF, Andrews L, Cirillo VP: Sequence and structure of the yeast galactose transporter. J Bacteriol 171: 4486–4493 (1989).

    PubMed  Google Scholar 

  32. Thorens B, Sarkar HK, Kaback HR, Lodish HF: Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell 55: 281–290 (1988).

    PubMed  Google Scholar 

  33. Vermaas WJF, Williams JGK, Arntzen CJ: Sequencing and modification of psb B, the gene encoding the CP-47 protein of photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 8: 317–326 (1987).

    Google Scholar 

  34. Vieira J, Messing J: Production of single-stranded plasmid DNA. Meth Enzymol 153: 3–11 (1987).

    PubMed  Google Scholar 

  35. Wilbur WJ, Lipman DJ: Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80: 726–730 (1983).

    PubMed  Google Scholar 

  36. Williams JGK: Construction of specific mutants in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Meth Enzymol 167: 766–778 (1988).

    Google Scholar 

  37. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmetterer, G.R. Sequence conservation among the glucose transporter from the cyanobacterium Synechocystis sp. PCC 6803 and mammalian glucose transporters. Plant Mol Biol 14, 697–706 (1990). https://doi.org/10.1007/BF00016502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016502

Key words

Navigation