Skip to main content
Log in

Plant and organ development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES. Genetic interactions underlying flower patterns in Antirrhinum majus. Genes Devel 3: 1758–1567 (1989).

    PubMed  Google Scholar 

  2. Araki T, Komeda Y: Electrophoretic analysis of florallyevoked meristems of Pharbitis nil Choisy cv. Violet. Plant Cell Physiol 31: 137–144 (1990).

    Google Scholar 

  3. Barber JT, Steward FC: The proteins of Tulipa and their relation to morphogenesis. Devel Biol 17: 326–349 (1968).

    Article  Google Scholar 

  4. Bassett CL, Mothershed CP, Galau GA: Floral-specific polypeptides in the Japanese morning glory. Planta 175: 221–228 (1988).

    Google Scholar 

  5. Battey NH, Lyndon RF: Reversion of flowering. Bot Rev 56: 162–89 (1990).

    Google Scholar 

  6. Benfey PN, Chua N-H: The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959–966 (1990).

    Google Scholar 

  7. Benson S, Sucov H, Stephens L, Davidson E, Wilt F: A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. Devel Biol 120: 499–506 (1987).

    Google Scholar 

  8. Bernier G, Kinet J-M, Bronchart R: Cellular events at the meristem during floral induction in Sinapis alba L. Physiol Végét 5: 311–324 (1967).

    Google Scholar 

  9. Bernier G, Kinet J-M, Bodson M, Rouma Y, Jacqmard A: Experimental studies on the mitotic activity of the shoot apical meristem and its relation to floral evocation and morphogenesis in Sinapis alba. Bot Gaz 135: 345–352 (1974).

    Article  Google Scholar 

  10. Bhadula SK, Sawhney VK: Protein analysis of floral organs of some members of Solanaceae. Bot Mag Tokyo 102: 85–91 (1989).

    Google Scholar 

  11. Blakely LM, Blakely RM, Colowit PM, Elliot DS: Experimental studies on lateral root formation in radish seedling roots. II. Analysis of the dose-response to endogenous auxin. Plant Physiol 87: 414–419 (1988).

    Google Scholar 

  12. Bodson M: Variation in the rate of cell division in the apical meristem of Sinapis alba during transition to flowering. Ann Bot 39: 547–554 (1975).

    Google Scholar 

  13. Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20 (1991).

    PubMed  Google Scholar 

  14. Carpenter R, Coen ES: Floral homeotic mutations produced by transposon mutagenesis in Antirrhinum majus. Genes Devel 4: 1483–1493 (1990).

    PubMed  Google Scholar 

  15. Coen ES: The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol 42: 241–279 (1991).

    Article  Google Scholar 

  16. Creamer LK, Jimines-Flores R, Richardson T: Genetic modifications of food proteins. Trends Biotechnol 6: 163–169 (1988).

    Article  Google Scholar 

  17. Cremer F, Van deWalle C, Bernier G: Two-dimensional gel electrophoresis of polypeptides from vegetative and reproductive buds of Sinapis alba. Arch Int Physiol Biochim 94: 9–10 (1985).

    Google Scholar 

  18. Davies EL, Rennie P, Steeves TA: Further analytical and experimental studies on the shoot apex of Helianthus annuus: variable activity in the central zone. Canad J Bot 57: 971–980 (1979).

    Google Scholar 

  19. Davidson EH: Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development 105: 421–445 (1989).

    PubMed  Google Scholar 

  20. DeBellis L, Nishimura M: Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol 32: 555–561 (1991).

    Google Scholar 

  21. Drews GN, Bowman JL, Meyerowitz EM: Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65: 991–1002 (1991).

    Article  PubMed  Google Scholar 

  22. Drews GN, Goldberg RB: Genetic controls of flower development. Trends Genet 5: 256–261 (1989).

    Article  PubMed  Google Scholar 

  23. Edwards JW, Coruzzi GM: Cell-specific gene expression in plants. Annu Rev Genet 24: 275–30 (1990).

    Article  PubMed  Google Scholar 

  24. Ellis RJ: Molecular chaperones. Annu Rev Biochem 60: 321–347 (1991).

    Article  PubMed  Google Scholar 

  25. Evans PT, Holaway BL, Malmberg RL: Biochemical differentiation in the tobacco flower probed with monoclonal antibodies. Planta 175: 259–269 (1988).

    Google Scholar 

  26. Evans PT, Malmberg RL: Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40: 235–269 (1989).

    Google Scholar 

  27. Evrard JL, Jako C, Saint-Guily A, Weil JH, Kuntz M: Anther-specific, developmentally regulated expression of genes encoding a new class of prolinerich proteins in sunflower. Plant Mol Biol 16: 271–281 (1991).

    PubMed  Google Scholar 

  28. Francis D, Lyndon RF: Synchronisation of cell division in the shoot apex of Silene in relation to flower initiation. Planta 145: 151–7 (1979).

    Google Scholar 

  29. Francis D, Rembur J, Nougarède A: Changements dans la composition polypeptidique du méristème de Silene coeli-rosa (L.) au cours de l'induction florale. Comptes Rendues Acad Sci Paris, Ser III 307: 763–770 (1988).

    Google Scholar 

  30. Gao X-P, Francis D, Ormrod JC, Bennett MD: Unpublished data (1991).

  31. Gasser CS: Molecular studies on the differentiation of floral organs. Annu Rev Plant Physiol Plant Mol Biol 42: 621–649 (1991).

    Article  Google Scholar 

  32. Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT: Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1: 15–24 (1989).

    Article  PubMed  Google Scholar 

  33. Goldberg RB: Regulation of plant gene expression. Phil Trans Royal Soc London B 314: 343–353 (1986).

    Google Scholar 

  34. Goldberg RB, Barker SJ, Perez-Grau L: Regulation of gene expression during plant embryogenesis. Cell 56: 149–160 (1989).

    Article  PubMed  Google Scholar 

  35. Gonthier R, Jacqmard A, Bernier G: Changes in cell-cycle duration and growth fraction in the shoot meristem of Sinapis during floral transition. Planta 170: 55–59 (1987).

    Google Scholar 

  36. Goodwin PB, Lyndon RF: Synchronisation of cell division during transition to flowering in Silene apices not due to increased symplast permeability. Protoplasma 116: 219–222 (1983).

    Google Scholar 

  37. Graham IA, Smith LM, Leaver CJ, Smith SM: Developmental regulation of expression of the malate synthase gene in transgenic plants. Plant Mol Biol 15: 539–549 (1990).

    PubMed  Google Scholar 

  38. Green PB: Plasticity in shoot development: a biophysical view. Symp Soc Exp Biol 40: 211–232 (1986).

    PubMed  Google Scholar 

  39. Grose S, Lyndon RF: Inhibition of growth and synchronised cell division in the shoot apex in relation to flowering in Silene. Planta 161: 289–294 (1984).

    Google Scholar 

  40. Hotta Y, de laPena A, Stern H: Control of enzyme accessibility to specific DNA sequences during meiotic prophase by alterations in chromatin structure. Cytologia 50: 611–620 (1985).

    Google Scholar 

  41. Houssa C, Jacqmard A, Bernier G: Activation of replicon origins as a possible target for cytokinins in shoot meristems of Sinapis. Planta 181: 324–326 (1990).

    Article  Google Scholar 

  42. Irish VF, Sussex IM: Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2: 741–753 (1990).

    Article  PubMed  Google Scholar 

  43. Jackson JA, Lyndon RF: Habituation: cultural curiosity or developmental determinant? Physiol Plant 79: 579–583 (1990).

    Article  Google Scholar 

  44. Jacqmard A, Houssa C: DNA fiber replication during a morphogenetic switch in the shoot meristematic cells of a higher plant. Exp Cell Res 179: 454–461 (1988).

    Article  PubMed  Google Scholar 

  45. Jacqmard A, Lyndon RF, Salmon J: Appearance of specific antigenic proteins in the maturing sexual organs of Sinapis flowers. J Cell Sci 68: 195–209 (1984).

    PubMed  Google Scholar 

  46. Kelly AJ, Zagotta MT, White RA, Chang C, Weeks-Wagner DR: Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell 2: 963–972 (1990).

    Article  PubMed  Google Scholar 

  47. Kinet J-M, Bodson M, Alvinia AM, Bernier G: The inhibition of flowering in Sinapis alba after the arrival of the floral stimulus at the meristem. Z Pflanzenphysiol 66: 49–63 (1971).

    Google Scholar 

  48. Koltunow AM, Truettner J, Cox KN, Wallroth M, Goldberg RB: Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224 (1990).

    Article  PubMed  Google Scholar 

  49. Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW: Ap 2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1: 1195–1208 (1989).

    Article  PubMed  Google Scholar 

  50. Langdale JA, Rothermel BA, Nelson T: Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Devel 2: 106–115 (1988).

    PubMed  Google Scholar 

  51. Lyndon RF: The shoot apex. In: Yeoman MM (ed) Cell Division in Higher Plants, pp. 285–314. Academic Press, new York (1976).

    Google Scholar 

  52. Lyndon RF: Initiation and growth of internodes and stem and flower frusta in Silene coeli-rosa. In: Atherton J (ed) The Manipulation of Flowering, pp. 301–314. Butterworth, London (1987).

    Google Scholar 

  53. Lyndon RF: Synchronization of cell division during flower initiation in third-order buds of Silene. Ann Bot 59: 67–72 (1987).

    Google Scholar 

  54. Lyndon RF: Plant Development: The Cellular Basis, 320 pp. Unwin Hyman, London (1990).

    Google Scholar 

  55. Lyndon RF, Cunninghame ME: Control of shoot apical development via cell division. Symp Soc Exp Biol 40: 233–255 (1986).

    PubMed  Google Scholar 

  56. Lyndon RF, Jacqmard A, Bernier G: Changes in protein composition of the shoot meristem during floral evocation in Sinapis alba. Physiol Plant 59: 476–480 (1983).

    Google Scholar 

  57. Malmberg RL, Mclndoo J, Hiatt J, Lowe BA. Genetics of polyamine synthesis in tobacco: genetic switches in the flower. Cold Spring Harb Symp Quant Biol 50: 475–482 (1985).

    PubMed  Google Scholar 

  58. McDaniel CN: Competence, determination, and induction in plant development. In: Malacinski GM (ed) Pattern Formation: A Primer in Developmental Biology, pp. 393–412. Macmillan, New York (1984).

    Google Scholar 

  59. Medford JI, Elmer JS, Klee HJ: Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell 3: 359–370 (1991).

    Article  PubMed  Google Scholar 

  60. Meeks-Wagner DR, Dennis ES, Tran Thanh Van K, Peacock WJ: Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development Plant Cell 1: 25–35 (1989).

    Article  PubMed  Google Scholar 

  61. Meicenheimer RD: Changes in Epliobium phyllotaxy induced by N-1-naphthylphthalamic acid and A-4-chlorophenoxyisobutyric acid. Am J Bot 68: 1139–1154 (1981).

    Google Scholar 

  62. Meinhardt H: Models of Biological Pattern Formation. Academic Press, London (1982).

    Google Scholar 

  63. Melzer S, Majewski DM, Apel K: Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. Plant Cell 2: 953–961 (1990).

    Article  PubMed  Google Scholar 

  64. Miller MB, Lyndon RF: The cell cycle in vegetative and floral shoot meristems measured by a double labelling technique. Planta 126: 37–43 (1975).

    Google Scholar 

  65. Mullet JE: Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39: 475–502 (1988).

    Article  Google Scholar 

  66. Napier RM, Venis MA: Receptors for plant growth regulators: recent advances. J Plant Growth Regul 9: 113–126 (1990).

    Google Scholar 

  67. Newton KJ: Plant mitochondrial genomes: organization, expression and variation. Annu Rev Plant Physiol Plant Mol Biol 39: 503–532 (1988).

    Article  Google Scholar 

  68. Ono M, Okazaki M, Harada H, Uchimiya H: In vitro translated polypeptides of different organs of Pharbitis nil Chois, strain Violet under flower-inductive and non-inductive conditions. Plant Sci 58: 1–7 (1988).

    Article  Google Scholar 

  69. Ormrod JC, Francis D: Effects of light on the cell cycle in the shoot apex of Silene coeli-rosa L. on the first day of floral induction. Protoplasma 124: 96–105 (1985).

    Google Scholar 

  70. Ormrod JC, Francis D: Cell cycle responses to red or far-red light, or darkness, in the shoot apex of Silene coeli-rosa L. during floral induction. Ann Bot 57: 91–100 (1986).

    Google Scholar 

  71. Ormrod JC, Francis D: Mean rate of DNA replication and replicon size in the shoot apex of Silene coeli-rosa L. during the initial 120 minutes of the first day of floral induction. Protoplasma 130: 206–210 (1986).

    Google Scholar 

  72. Ormrod JC, Francis D: Effects of interpolated dark periods during the first long day of floral induction on the cell cycle in the shoot apex of Silene coeli-rosa. Physiol Plant 71: 372–378 (1987).

    Google Scholar 

  73. Ptashne M, Gann AAF: Activators and targets. Nature 346: 329–331 (1990).

    Article  PubMed  Google Scholar 

  74. Poethig RS: Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930 (1990).

    Google Scholar 

  75. Rembur J, Nougarède A: Changes in the polypeptide composition during the ontogenic development of the shoot apex of Chrysanthemum segetum L. analyzed by two-dimensional mini-gel electrophoresis. Plant Cell Physiol 30: 359–363 (1989).

    Google Scholar 

  76. Rodriguez D, Dommes J, Northcote DH: Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds. Plant Mol Biol 9: 227–235 (1987).

    Google Scholar 

  77. Santiago JF, Goodwin PB: Restricted cell/cell communication in the shoot apex of Silene coeli-rosa during the transition to flowering is associated with a high mitotic index rather than with evocation. Protoplasma 146: 52–60 (1988).

    Google Scholar 

  78. Sawhney VK, Chen K, Sussex IM: Soluble proteins of the mature floral organs of tomato (Lycopersicon esculentum Mill.). J Plant Physiol 121: 265–271 (1985).

    Google Scholar 

  79. Smith AG, Hinchee M, Horsch R: Cell and tissue specific expression localized by in situ RNA hybridization in floral tissues. Plant Mol Biol Rep 5: 237–241 (1987).

    Google Scholar 

  80. Sommer H, Beltran J-P, Huitser P, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Z: Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J 9: 605–613 (1990).

    PubMed  Google Scholar 

  81. Sossountzov L, Maldiney R, Sotta B, Sabbagh I, Habricot Y, Bonnet Miginiac E: Immunocytochemical localization of cytokinins in Craigella tomato and a sideshootless mutant. Planta 175: 291–304 (1988).

    Google Scholar 

  82. Sotta B, Sossountzov L, Maldiney R, Sabbagh I, Tachon P, Miginiac E: Abscisic acid localization by light microscopic immunohistochemistry in Chenopodium polyspermum L. Histochem Cytochem 33: 201–208 (1985).

    Google Scholar 

  83. Staiger CJ, Lloyd CW: The plant cytoskeleton. Curr Opinion Cell Biol 3: 33–42 (1991).

    PubMed  Google Scholar 

  84. Steeves TA, Sussex I: Patterns in plant development. Cambridge University Press, Cambridge (1989).

    Google Scholar 

  85. Stern H, Hotta Y: Chromosome organization in the regulation of meiotic prophase. In: Dickinson HG (ed) Controlling Events in Meiosis, 38th Symposium of the Society for Experimental Biology, pp. 161–175. Cambridge University Press, Cambridge (1984).

    Google Scholar 

  86. Taylor M, Francis D, Rembur J, Nougarède A: Changes to proteins in the shoot meristem of Silene coeli-rosa during the transition to flowering. Plant Cell Physiol 31: 1169–1176 (1990).

    Google Scholar 

  87. Thornley JHM: Phyllotaxis. I. A mechanistic model. Ann Bot 39: 491–507 (1975).

    Google Scholar 

  88. Tran Thanh Van KM: Control of morphogenesis in in-vitro cultures. Annu Rev Plant Physiol 32: 291–311 (1981).

    Article  Google Scholar 

  89. Ursin VM, Yamaguchi J, McCormick S: Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell 1: 727–736 (1989).

    Article  PubMed  Google Scholar 

  90. Veen AH, Lindenmayer A: Diffusion mechanism for phyllotaxis. Theoretical physico-chemical and computer study. Plant Physiol 60: 127–139 (1977).

    Google Scholar 

  91. Wallace JC, Gallili G, Kawata EE, Cuellar RE, Shotwell MA, Larkins BA. Aggregation of lysine-containing zeins into protein bodies in Xenopus oocytes. Science 240: 662–664 (1988).

    PubMed  Google Scholar 

  92. Wick SM: Spatial aspects of cytokinesis in plant cells. Curr Opinion Cell Biol 3: 253–260 (1991).

    PubMed  Google Scholar 

  93. Yamamoto YT, Taylor CG, Acedo GN, Chen C-L, Conkling MA: Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3: 371–382 (1991).

    Article  PubMed  Google Scholar 

  94. Yanofsky MF, Ma H, Bowmann JL, Drews GN, Feldmann KA, Meyerowitz EM: The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyndon, R.F., Francis, D. Plant and organ development. Plant Mol Biol 19, 51–68 (1992). https://doi.org/10.1007/BF00015606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015606

Key words

Navigation