Skip to main content
Log in

The relationship of respiration in organic and mineral soil layers to soil chemical properties

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Respiration rates of the forest floor, exclusive of the L layer, and of the mineral horizons from three soils developed under pine and hardwoods in the North Carolina Piedmont were measured with a Warburg respirometer. Respiration, based on carbon content of the soil, decreased with depth through the A1 horizon, but subdivisions of the A2 showed no difference. When all soil layers were considered, there were no significant differences in respiration between cover type or soil series. However, in the least decomposed organic layer, the F1, respiration of pine litter was 77 per cent of that of hardwood litter, and respiration of Georgeville or Colfax soils was only 58 per cent of that of Iredell soil. Regression analyses, primarily with inorganic soil nutrient factors, accounted for over 90 per cent of the variation in respiration in the organic layers but for less than 50 per cent in the mineral soil under hardwoods. Up to 15 factors were included in equations, but four factors explained at least 70 per cent of the variation accounted for by regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bremner, J. M., Nitrogen availability indexes. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, pp 1324–1325. Ed. C. A. Black. Am. Soc. Agron., Madison, Wis. (1965).

    Google Scholar 

  2. Broadfoot, W. M. and Pierre, W. H., Forest soil studies: I. Relation of rate of decomposition of tree leaves to their acid-base balance and other chemical properties. Soil Sci. 48, 329–348 (1939).

    Google Scholar 

  3. Coile, T. S., Soil changes associated with loblolly pine succession on abandoned agricultural land of the Piedmont plateau. Duke Univ. Sch. For. Bull. 5, 85 pp (1940).

  4. Etherington, J. R. and Morrey, B. A., Nitrogen determination in nutrient cycling studies: An improved technique for handling multiple samples. J. Applied Ecol. 4, 431–433 (1967).

    Google Scholar 

  5. Jackson, M. L., Soil Chemical Analysis. Prentice Hall, Inc., Englewood Cliffs, N. J. (1958).

    Google Scholar 

  6. Olson, S. R. and Dean, L. A., Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, pp 1035–1049. Ed. C. A. Black. Am. Soc. Agron., Madison, Wis. (1965).

    Google Scholar 

  7. Parkinson, D. and Coups, E., Microbial activity in a podzol. In Soil Organisms, pp 167–175. Ed. J. Doeksen and J.van der Drift. North Holland Publ. Co., Amsterdam (1962).

    Google Scholar 

  8. Pratt, P. F., Potassium. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, pp 1022–1034. Ed. C. A. Black. Am. Soc. Agron., Madison, Wis. (1965).

    Google Scholar 

  9. Quarishi, M. S. I. and Cornfield, A. H., Effects of addition of varying levels of copper, as oxide or phosphate, on nitrogen mineralization and nitrification during incubation of a slightly calcarious soil receiving dried blood. Plant and Soil 35, 51–55 (1971).

    Google Scholar 

Download references

Authors

Additional information

Principal Soil Scientists, U. S. Department of Agriculture, Forest Service, South-eastern Forest Experiment Station, Forestry Sciences Laboratory, Research Triangle Park, N. C. Mention of commercial products in this paper does not constitute endorsement by the U. S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorgensen, J.R., Well, C.G. The relationship of respiration in organic and mineral soil layers to soil chemical properties. Plant Soil 39, 373–387 (1973). https://doi.org/10.1007/BF00014804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014804

Keywords

Navigation