Skip to main content
Log in

Molecular cloning of the gene encoding developing seed l-asparaginase from Lupinus angustifolius

  • Update Section
  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A genomic sequence encoding Lupinus angustifolius L-asparaginase has been obtained, and is the first report of this gene from a plant source. The 3.2 kb of DNA sequenced contains a 1136 bp 5′ flanking sequence, four exons and three introns. Intron-exon borders were mapped by comparing the genomic sequence with that of a L. arboreus cDNA. Primer extension analysis revealed transcription start sites 16 bp and 13 bp 5′ of the initiating ATG for L. angustifolius and L. arboreus, respectively. The 5′ flanking region contained sequences associated with seed-specific expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Atkins CA, Pate JS, Sharkey PJ: Asparagine metabolism-Key to the nitrogen nutrition of developing legume seeds. Plant Physiol 56: 807–812 (1975).

    Google Scholar 

  2. Chang KS, Farnden KJF: Purification and properties of asparaginase from Lupinus arboreus and Lupinus angustifolius. Arch Biochem Biophys 208: 49–58 (1981).

    Google Scholar 

  3. Chen Z-L, Schuler MA, Beachy RN: Functional analysis of regulatory elements in a plant embryo-specific gene. Proc Natl Acad Sci USA 83: 8560–8564 (1986).

    Google Scholar 

  4. Dickinson CD, Evans RP, Nielsen NC: RY repeats are conserved in the 5′-flanking regions of legume seed-protein genes. Nucl Acids Res 16: 371 (1988).

    Google Scholar 

  5. Evans IJ, James AM, Barnes SR: Organisation and evolution of repeated DNA sequences in closely related plant genomes. J Mol Biol 10: 803–826 (1983).

    Google Scholar 

  6. Gilbert HJ, Blazek R, Bullman HMS, Minton NP: Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Escherichia carotovora. J Gen Microbiol 132: 151–160 (1986).

    Google Scholar 

  7. Goldberg RB, Barker SJ, Perez-Grau L: Regulation of gene expression during plant embryogenesis. Cell 56: 149–160 (1989).

    Google Scholar 

  8. Kaiser K, Murray NE: The use of phage lambda replacement vectors in the construction of representative genomic DNA libraries. In: Glover DM (ed) DNA Cloning: A Practical Approach, vol. 1, pp. 1–48 IRL Press, Oxford/Washington DC (1985).

    Google Scholar 

  9. Kingston RE: Primer extension. In: Ausubel F (ed) Current Protocols in Molecular Biology, pp. 4.7.1–3. Wiley Greene (1987).

    Google Scholar 

  10. Kim K-Y, Kamerud JQ, Livinston DM, Roon RJ: Asparaginase II of Saccharomyces cerevisiae. J Biol Chem 263: 11948–11953 (1988).

    Google Scholar 

  11. Lea PJ, Miffin BJ: Transport and metabolism of asparagine and other nitrogen compounds within the plant. In: Miflin BJ (ed) The Biochemistry of Plants: A Comprehensive Treatise, vol. 5: Amino Acids and Derivatives, pp. 569–608. Academic Press, New York (1980).

    Google Scholar 

  12. Lough TJ, Chang KS, Carne A, Monk BC, Reynolds PHS, Farnden KJF: Developmental regulation, purification and peptide sequences of L-asparaginase from developing seeds of lupin (Lupinus arboreus). Phytochemistry, in press (1992).

  13. Lough TJ, Reddington B, Grant MR, Hill DF, Reynolds PHS, Farnden KJF: The molecular cloning of L-asparaginase from developing seeds of lupin (Lupinus arboreus). Plant Mol Biol, in press (1992).

  14. Newbigin EJ, deLumen BO, Chandler PM, Gould A, Blagrove RJ, March JF, Korrt AA, Higgins TJV: Pea convicilin: structure and primary sequence of the protein and expression of a gene in the seeds of transgenic tobacco. Planta 180: 461–470 (1990).

    Google Scholar 

  15. Ratajczak W: Asparagine metabolism in developing seeds of Lupinus luteus L. Biochem Physiol Pflanzen 181: 17–22 (1986).

    Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  17. Sanger F, Micklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  18. Sieciecchowicz KA, Joy KW, Ireland RJ: The metabolism of asparagine in plants. Phytochemistry 27: 663–671 (1988).

    Google Scholar 

  19. Stougaard J, Sandal NN, Gron A, Kuhle A, Marcker KA: 5′ analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6: 3565–3569 (1987).

    Google Scholar 

  20. Stockwell PA: DNA sequence analysis software. In: Bishop MJ, Rawlings CJ (eds) Nucleic Acid and Protein Sequence Analysis: A Practical Approach, pp. 19–45. IRL Press, Oxford (1987).

    Google Scholar 

  21. Wilkins TA, Raikhel NV: Expression of rice lectin is governed by two temporally and spatially regulated mRNAs in developing embryos. Plant Cell 1: 541–549 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, J.M.J.J., Vincze, E., Grant, M.R. et al. Molecular cloning of the gene encoding developing seed l-asparaginase from Lupinus angustifolius . Plant Mol Biol 20, 333–336 (1992). https://doi.org/10.1007/BF00014503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014503

Key words

Navigation