Skip to main content
Log in

The role of glycogen during the ontogenesis of Chironomus anthracinus (Chironomidae, Diptera)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Large fluctuations in glycogen content were found in larvae, pupae and adults of Chironomus anthracinus (Zetterstedt) from the profundal zone of Lake Esrom, Denmark. In 2nd, 3rd and 4th instar larvae the glycogen concentration (expressed as percentage of dry weight) increased during periods of aerobic conditions to a maximum of 25%, but decreased in periods of hypoxia longer than two months to 10–12% in young larvae. A further decrease to about 5% took place, when moulting from 2nd to 3rd or from 3rd to 4th instar occurred after overturn. Prior to pupation the glycogen concentration was restored to 26–28%. The glycogen concentration approximated 22% in young pupae, but decreased during the pupal stage and newly hatched adults contained 12–15%. Finally, the glycogen store of both males and females was further reduced during the swarming period. Thus, glycogen seems to be an important energy source (1) during periods with hypoxic conditions, (2) during periods with high internal energy requirement such as ecdyses and metamorphosis, and (3) during the non-feeding adult life stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augenfeld, J. M., 1967. Effects of oxygen deprivation on aquatic midge larvae under natural and laboratory conditions. Physiol. Zool. 40: 149–158.

    Google Scholar 

  • Bade, M. L. & G. R. Wyatt, 1962. Metabolic conversions during pupation of the Cecropia silkworm. 1. Deposition and utilization of nutrient reserves. Biochem. J. 83: 470–478.

    Google Scholar 

  • Berg, K., 1938. Studies on the bottom animals of Esrom Lake. K. Danske Vidensk. Selsk. Skr. Naturv. Math. Afd. 9 Rk. 8: 1–125.

    Google Scholar 

  • Czeczuga, B., 1963. Quantitative proportions of glycogen in certain species of the Tendipedidae (Diptera) larvae. Hydrobiologia 22: 92–110.

    Google Scholar 

  • Czeczuga, B. & E. Niedzwiecki, 1966. Ecological-physiological aspects of the occurrence of the larvae of Glyptotendipes ex. gr. gripekoveni Kieff. (Diptera). Bulletin de l'Académie Polonaise des Sciences Cl. II, 14: 693–695.

    Google Scholar 

  • Fink, D. E., 1925. Metabolism during embryonic and metamorphic development of insects. J. gen. Physiol. 7: 527–543.

    Google Scholar 

  • Hamburger, K., P. C. Dall & C. Lindegaard, 1994. Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration. Hydrobiologia 294: 43–50.

    Google Scholar 

  • Hamburger, K., P. C. Dall & C. Lindegaard, 1995. Effects of oxygen deficiency on survival and glycogen content of Chironomus anthracinus (Diptera, Chironomidae) under laboratory and field conditions. Hydrobiologia 297: 187–200.

    Google Scholar 

  • Harnisch, O., 1938. Studien zum anaeroben und Erholungsstoffwechsel der Larve von Chironomus thummi. I. Wechsel im Glycogen-, Fett- und N-gehalt. Z. vergl. Physiol. 26: 200–229.

    Google Scholar 

  • Harnisch, O., 1939. Studien zum anaeroben und Erholungsstoffwechsel der Larve von Chironomus thummi. II. Säurebildung und ‘Notoxybiose’. Z. vergl. Physiol. 27: 275–303.

    Google Scholar 

  • Harnisch, O., 1942. Zur Analyse der Oxybiose der Larve von Chironomus bathophilus K., einer Chironomus-Larve der Seentiefe. Zool. Anz. 139: 1–12.

    Google Scholar 

  • Harnisch, O., 1943. Messungen zur Kennzeichnung des aeroben und anaeroben Stoffwechsels der larve von Chironomus bathophilus K., einer Chironomus-Larve der Seentiefe. Zool. Anz. 142: 240–248.

    Google Scholar 

  • Harnisch, O., 1950. Einige Messungen zum Glykogengehalt und Glykogenstoffwechsel der Larve von Chironomus bathophilus K. Zool. Anz. 145: 301–305.

    Google Scholar 

  • Hill, W. R., 1992. Food limitation and interspecific competition in snail-dominated streams. Can. J. Fish. aquat. Sci. 49: 1257–1267.

    Google Scholar 

  • Jónasson, P. M., 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos Suppl. 14: 1–148.

    Google Scholar 

  • Lindegaard, C., P. C. Dall & S. B. Hansen, 1993. Natural and imposed variability in the profundal fauna of Lake Esrom, Denmark. Verh. int. Ver. Limnol. 25: 576–581.

    Google Scholar 

  • Thienemann, A., 1954. Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Die Binnengewässer 20: 1–834.

    Google Scholar 

  • Sactor, B., 1964. Energetics and respiratory metabolism of muscular contraction. In M. Rockstein (ed.), The physiology of Insecta, 2. Academic Press, London and New York: 483–580.

    Google Scholar 

  • Wyatt, G. R., 1967. The biochemistry of sugars and polysaccharides in insects. In J. W. L. Beament, J. E. Treherne & V. B. Wigglesworth (eds), Advances in Insect Physiology 4. Academic Press, London & New York: 287–360.

    Google Scholar 

  • Zaluska, H., 1959. Glycogen and chitin metabolism during development of the silkworm (Bombyx mori L.). Acta biol. exp., Lodz 19: 339–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamburger, K., Lindegaard, C. & Dall, P.C. The role of glycogen during the ontogenesis of Chironomus anthracinus (Chironomidae, Diptera). Hydrobiologia 318, 51–59 (1996). https://doi.org/10.1007/BF00014131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014131

Key words

Navigation