Skip to main content
Log in

The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Active bacterial cells may be recognized under the microscope by epifluorescence and by the simultaneous presence, seen under bright light field of optically dense intracellular deposits of INT-formazan. An improved procedure that leads to a sharp definition of cells and formazan deposits is presented here. Cells are concentrated on cellulose membrane filters of 0.1 µm porosity which are rendered further transparent prior to immersion of the cells in a layer of 4′, 6-diaminidino-2-phenylindole (DAPI) s′ fluorochrome. This process leads to two significant improvements: (1) the fluorochrome is not trapped inside the membrane, which decreases the background fluorescence and leads to a better detection of the small cells; (2) the cells are immersed in an aqueous solution, which prevents rapid dissolution of the formazan crystals which would be expected if they were in contact with oily clearing agents. Tests on formazan labelling and on storage of INT-processed samples suggest other precautions for reliable use. Improved in this way, the method is simple, rapid and has numerous applications in environmental studies, ecophysiology and ecotoxicology. Some examples are given, with 2 to 98% of INT reducing cells observed, depending on different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bitton, G., R. J. Dutton & J. A. Foran, 1983. New rapid technic for counting microorganisms directly on membrane filters. Stain Technol. 58: 343–346.

    PubMed  CAS  Google Scholar 

  • Bright, J. J. & M. Fletcher, 1983. Amino acid assimilation and electron transport activity in attached and free-living marine bacteria. Appl. envir. Microbiol. 43: 818–825.

    Google Scholar 

  • Chrzanowski, T. H., R. D. Crotty, J. G. Hubbard & R. P. Welch, 1984. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10: 179–185.

    Article  Google Scholar 

  • Dufour, P., J. P. Torreton & M. Colon, 1990. Advantages of distinguishing the active fraction in bacterioplankton assemblages: some examples. In D. J. Bonin & H. L. Golterman (eds), Fluxes between trophic levels and through the water-sediment interface. Hydrobiologia 207: 295–301.

  • Ellar, D. L., E. Munoz & M. R. J. Salton, 1970. The effect of low concentration of glutaraldehyde on Micrococcus hysodeikticus membranes: changes in the release of membrane associated enzymes and membrane structure. Biochem. Biophys. Acta 225: 140–150.

    Google Scholar 

  • Harvey, R. W. & L. Y. Young, 1980. Enumeration of particle bound and unattached respiring bacteria in the salt marsh environment. Appl. envir. Microbiol. 40: 156–160.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  • Iturriaga, R., 1979. Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55: 157–169.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1974. Some observations on direct counts of freshwater bacteria obtained with a fluorescence microscope. Limnol. Oceanogr. 19: 540–543.

    Google Scholar 

  • King, L. K. & B. C. Parker, 1988. A simple, rapid method for enumerating total viable and metabolically active bacteria in groundwater. Appl. envir. Microbiol. 54: 1630–1631.

    Google Scholar 

  • Kogure, K., U. Simudu & N. Taga, 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, C. R. & A. Konopka, 1985. Seasonal bacterial production in a dimictic lakes as measured by increases in cell numbers and thymidine incorporation. Appl. envir. Microbiol. 49: 492–500.

    Google Scholar 

  • Mac Donald, R. M., 1980. Cytochemical demonstration of catabolism in soil microorganisms. Soil Biol. Biochem. 12: 419–423.

    Article  Google Scholar 

  • Maki, J. S. & C. C. Remsen, 1981. Comparison of two direct-count methods for determining metabolizing bacteria in freshwater. Appl. envir. Microbiol. 41: 132–1138.

    Google Scholar 

  • Meyer-Reil, L. A., 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. envir. Microbiol. 36: 506–512.

    CAS  Google Scholar 

  • Newell, S. Y., 1984. Modification of the gelatin-matrix method for enumeration of respiring bacterial cells for use with salt-marsh water samples. Appl. envir. Microbiol. 47: 873–875.

    Google Scholar 

  • Novitsky, J. A. & R. Y. Morita, 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48: 289–295.

    Article  Google Scholar 

  • Packard, T. T., 1985. Measurement of electron transport activity of microplankton. Adv. aquat. Microbiol. 3: 207–261.

    Google Scholar 

  • Packard, T. T., P. C. Garfield & R. Martinez, 1983. Respiration and enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium. Pseudomonas perfectomarinus. Deep Sea Res. 30: 227–243.

    Article  CAS  Google Scholar 

  • Porter, K. J. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Article  Google Scholar 

  • Quinn, J. P., 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the aquatic environment. J. appl. Bact. 57: 51–57.

    CAS  Google Scholar 

  • Smith, A. J. & D. S. Hoare, 1977. Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes? Bact. Rev. 41: 419–448.

    PubMed  CAS  Google Scholar 

  • Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microbiol. Ecol. 4: 127–133.

    Article  Google Scholar 

  • Tabor, P. S. & R. A. Neihof, 1982. Improved method for determination of respiring individual microorganisms in natural waters. Appl. envir. Microbiol. 43: 1249–1255.

    CAS  Google Scholar 

  • Von Bielig, H. G., G. A. Kausche & H. Haardick, 1949. Uber den Nachweiß von Reduktion in Bakterian. Z. Naturforsch. 46: 80–91.

    Google Scholar 

  • Zimmerman, R., R. Iturriaga & J. Becker-Birck, 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envir. Microbiol. 36: 926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour, P., Colon, M. The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications. Hydrobiologia 232, 211–218 (1992). https://doi.org/10.1007/BF00013706

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013706

Key words

Navigation