Skip to main content
Log in

Influence of plants on redox potential and methane production in water-saturated soil

  • Plant-Environment Interactions in Freshwater Systems
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Pressurized ventilation, which increases the oxygen supply of the roots and rhizomes, has been detected on three waterlilies (Nymphaea capensis, N. lotus var. lotus, N. odorata), two Japanese swamp grasses (Ischaemum aristatum var. glaucum, Isachne globosa), and three willow species (Salix alba, S. cinerea, S. viminalis). All of these plant species are able to generate sufficient convective gas flow to meet the oxygen demand of their organs buried in the anoxic soil. Excretion of surplus oxygen maintains higher redox potential in the tussock of I. aristatum and also in the rhizosphere of the waterlilies and willows, thereby protecting the root system from phytotoxin uptake. High methane production rates in reduced sediments contrast to the significantly lower rates of methane formation in the oxidized rhizosphere surrounding N. lotus roots. This is an example of how wetland plants use pressurized ventilation to alter microbial activities in their habitat. Pressurized ventilation seems to provide these plant species with a competetive advantage over species that rely on diffusive aeration of their submerged parts, thereby enabling them to become dominant weeds in their aquatic ecosystems or in wet meadows of nature reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, J. & W. Armstrong, 1988. Phragmites australis — a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol. 108: 373–382.

    Google Scholar 

  • Armstrong, J. & W. Armstrong, 1990. Pathways and mechanisms of oxygen transport in Phragmites australis. In P F. Cooper & B. C. Findlater (eds), The use of constructed wetlands in water pollution control. Pergamon, Oxford: 529–533.

    Google Scholar 

  • Armstrong, J. & W. Armstrong, 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat. But. 39: 75–88.

    Google Scholar 

  • Armstrong, W., 1965. Studies relating to the survival of plants in waterlogged soils. Ph.D. Thesis, University of Hull, UK.

    Google Scholar 

  • Armstrong, W., 1968. Oxygen diffusion from roots of woody species. Physiol. Plant. 21: 539–543.

    Google Scholar 

  • Armstrong, W., 1969. Rhizosphere oxidation in rice: An analysis of intervarietal differences in oxygen flux from the roots. Physiol. Plant. 22: 296–303.

    Google Scholar 

  • Armstrong, W., 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192–197.

    Google Scholar 

  • Armstrong, W., 1979. Aeration in higher plants. In H. W. Woolhouse (ed.), Advances in Botanical Research. Vol. 7. Academic Press, London: 225–332.

    Google Scholar 

  • Beckett, P. M., W. Armstrong, S. H. F. W. Justin & J. Armstrong, 1988. On the relative importance of convective and diffusive gas flow in plant aeration. New. Phytol. 10: 463–468.

    Google Scholar 

  • Brix, H., B. K. Sorrell & P. T. Orr, 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37: 1420–1433.

    Google Scholar 

  • Dacey, J. W. H., 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017–1019.

    Google Scholar 

  • Dacey, J. W. H., 1981. Pressurized ventilation in the yellow waterlily. Ecology 62: 1137–1147.

    Google Scholar 

  • Dacey, J. W. H., 1987. Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiol. 85: 199–203.

    Google Scholar 

  • Delieu, T. & D. A. Walker, 1972. An improved cathode for the measurement of photosynthetic oxygen evolution by isolated chloroplasts. New Phytol. 71: 201–225.

    Google Scholar 

  • Flessa, H. & W. R. Fischer, 1992a. Redoxprozesse in der Rhizosphäre von Land- und Sumpfpflanzen. Z. Pflanzenernähr. Bodenk. 155: 373–378.

    Google Scholar 

  • Flessa, H. & W. R. Fischer, 1992b. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and soil 143: 55–60.

    Google Scholar 

  • Grosse, W. & C. Bauch, 1991. Gas transfer in floating-leaved plants. Vegetatio 97: 85–192.

    Google Scholar 

  • Grosse, W. & J. Mevi-Schuetz, 1987. A beneficial gas transport system in Nymphoides peltata. Am. J. Bot. 74: 947–952.

    Google Scholar 

  • Grosse, W. & P. Schroeder, 1984. Oxygen supply of roots by gas transport in alder-trees. Z. Naturforsch. 39C: 1186–1188.

    Google Scholar 

  • Grosse, W. & P. Schroeder, 1985. Aeration of roots and chloroplast free tissues of trees. Ber. Deutsch. Bot. Ges. 98: 311–318.

    Google Scholar 

  • Grosse, W., H. B. Buechel & S. Lattermann, 1994. Root aeration in wetland trees and its ecophysiological significance. In A. D. Laderman (ed.), Coastally Restricted Forests, Oxford University Press, New York (in press).

    Google Scholar 

  • Grosse, W., H. B. Buechel & H. Tiebel, 1991. Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89–98.

    Google Scholar 

  • Grosse, W., J. Frye & S. Lattermann, 1992. Root aeration in wetland trees by pressurized gas transport. Tree Physiol. 10: 285–295.

    Google Scholar 

  • Grosse, W., A. Schulte & H. Fujita, 1993. Pressurized gas transport in two Japanese alder species in relation to their natural habitats. Ecol. Res. 8: 151–158.

    Google Scholar 

  • Mevi-Schutz, J. & W. Grosse, 1988. A two-way gas transport system in Nelumbo nucifera. Plant, Cell and Envir. 11: 27–34.

    Google Scholar 

  • Lattermann, S., 1994. Strukturelle und physiologische Anpassungen von Alnus glutinosa (L.) Gaertn. an Flutung und Bodenanaerobiose. Ph.D. Thesis. University of Cologne, Germany.

    Google Scholar 

  • Ohno, N., 1910. Über lebhafte Gasausscheidung aus den Blättern von Nelumbo nucifera Gaertn. Z. Pflanzenphysiol. 2: 641–664.

    Google Scholar 

  • Schroeder, P., 1989. Characterization of a thermo-osmotic gas transport mechanism in Abius glutinosa (L.) Gaertn. 0 Trees 3: 38–44.

    Google Scholar 

  • Schroeder, P, W Grosse & D. Woermann, 1986. Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J. Exp. Bot. 37: 1450–1461.

    Google Scholar 

  • Yabe, K. & M. Numata, 1984. Ecological studies of the Mobara-Yatsumi marsh. Main physical and chemical factors controlling the marsh ecosystem. Jap. J. Ecol. 34: 173–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse, W., Jovy, K. & Tiebel, H. Influence of plants on redox potential and methane production in water-saturated soil. Hydrobiologia 340, 93–99 (1996). https://doi.org/10.1007/BF00012739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012739

Key words

Navigation