Skip to main content
Log in

The peeling of flexible laminates

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The present work has defined an adhesive fracture energy G a for the peel testing of flexible laminates. The value of G a characterises the fracture of the laminate and is considered to be a ‘geometry-independent’ parameter which reflects (i) the energy to break the interfacial bonding forces and (ii) the energy dissipated locally ahead of the peel front in the plastic or viscoelastic zone. We have shown that in order to determine this true adhesive fracture energy G a that the following energy terms must be considered: (i) the stored strain-energy in the peeling arm, (ii) the energy dissipated during tensile deformation of the peeling arm, and (iii) the energy dissipated due to bending of the peeling arm. The analysis proposed yields quantitative expressions for these various energy dissipation terms and, in particular, considers the energy dissipated due to bending of the peeling arm. Another important feature of the analysis is the modelling of the region below the peel front as an elastic beam on an elastic foundation; such that the peeling arm does not act as a truly built-in beam and root rotation at the peel front is allowed. The analysis described in the present paper has been employed for four different laminates. The values of the local angle θ 0 at the peel front from the theoretical calculations have been shown to be in excellent agreement with the experimentally measured values; a small-scale peel test rig having been built so that the peel test, as a function of applied peel angle θ, thickness h of peeling arm and rate of test, could be observed and photographed using a stereo-optical microscope. The value of the adhesive fracture energy G a (i.e the ‘fully corrected’ value) for each laminate is indeed shown to be a ‘material parameter’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Aubrey, G.N. Welding and T. Wong, Journal of Applied Polymer Science 13 (1969) 2193–2207.

    Google Scholar 

  2. D.W. Aubrey, T.A. Jackson and J.D. Smith, Journal of the Institute of the Rubber Industry 3 (1969) 265–269.

    Google Scholar 

  3. A.N. Gent and R.P. Petrich, Proceedings Royal Society A310 (1969) 433–448.

    Google Scholar 

  4. D.H. Kaelble, Journal of Adhesion 1 (1969) 102–123.

    Google Scholar 

  5. D.H. Kaelble, Journal of Adhesion 1 (1969) 124–135.

    Google Scholar 

  6. A.N. Gent and A.J. Kinloch, Journal of Polymer Science, Polymer Physics 9 (1971) 659–668.

    Google Scholar 

  7. P.B. Lindley, Journal of the Institute of the Rubber Industry 5 (1969) 243–249.

    Google Scholar 

  8. E.H. Andrews and A.J. Kinloch, Proceedings Royal Society A332 (1973) 385–399.

    Google Scholar 

  9. E.H. Andrews and A.J. Kinlock, Proceedings Royal Society A332 (1973) 410–414.

    Google Scholar 

  10. K. Kendall, Journal of Adhesion 5 (1969) 105–117.

    Google Scholar 

  11. A.N. Gent and G.R. Hamed, Journal of Adhesion 1 (1975) 91–95

    Google Scholar 

  12. A. Ahagon and A.N. Gent, Journal of Polymer Science, Polymer Physics 13 (1975) 1285–1300.

    Google Scholar 

  13. A.N. Gent and G.R. Hamed, Polymer Engineering Science 17 (1977) 462–466.

    Google Scholar 

  14. T. Igarashi, Rubber Chemistry and Technology 49 (1975) 1200–1205.

    Google Scholar 

  15. A. Ahagon, A.N. Gent, H.J. Kim and Y. Kumagi, Rubber Chemistry and Technology 48 (1975) 896–901.

    Google Scholar 

  16. A.N. Gent and G.R. Hamed, Journal of Applied Polymer Science 21 (1977) 2817–2831.

    Google Scholar 

  17. F. Yamamoto, S. Yamakawa and S. Tsuru, Journal of Polymer Science, Polymer Physics 18 (1980) 1847–1851.

    Google Scholar 

  18. A.N. Gent and S.Y. Kaang, Journal of Adhesion 24 (1987) 173–181.

    Google Scholar 

  19. K.S. Kim and N. Aravas, International Journal of Solids and Structures 24 (1988) 417–435.

    Google Scholar 

  20. J. Kim, K.S. Kim and Y.H. Kim, Journal of Adhesion Science Technology 3 (1989) 175–187.

    Google Scholar 

  21. K.S. Kim and J. Kim, Transactions ASME 110 (1988) 266–273.

    Google Scholar 

  22. N. Aravas, K.S. Kim and M.J. Loukis, Materials Science and Engineering A107 (1989) 159–168.

    Google Scholar 

  23. A.N. Gent and C.W. Lin, Journal of Adhesion 30 (1989) 1–11.

    Google Scholar 

  24. M.D. Thouless and H.M. Jensen, Journal of Adhesion 38 (1992) 185–197.

    Google Scholar 

  25. J.D. Williams, Journal of Adhesion 41 (1993) 225–239.

    Google Scholar 

  26. A.J. Kinloch, Adhesion and Adhesives: Science and Technology, Chapman and Hall (1987).

  27. C.C. Lau, A.J. Kinloch and J.G. Williams, Proceedings Adhesion Society Williamsburg, USA (1993).

  28. M. Charalambides, A.J. Kinloch, Y. Wang, and J.G. Williams, International Journal of Fracture 54 (1992) 269–291.

    Google Scholar 

  29. M.F. Kanninen, International Journal of Fracture 10 (1974) 415–430.

    Google Scholar 

  30. S. Hashemi, A.J. Kinloch and J.G. Williams, Proceedings Royal Society A427 (1990) 173–199.

    Google Scholar 

  31. A.J. Kinloch and M.L. Yuen, Journal of Materials Science 24 (1989) 2183–2190.

    Google Scholar 

  32. C.C. Lau, Ph.D. thesis, University of London, London (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinloch, A.J., Lau, C.C. & Williams, J.G. The peeling of flexible laminates. Int J Fract 66, 45–70 (1994). https://doi.org/10.1007/BF00012635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012635

Keywords

Navigation