Skip to main content
Log in

Benthic algal populations respond to aluminum, acid, and aluminum-acid mixtures in artificial streams

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Elevated aluminum (Al) concentrations are often associated with acid-stressed aquatic ecosystems, so it has been unclear whether acidic water or elevated Al is more responsible in changing community composition. Experiments were done to investigate effects of acidification and increased Al on the abundance of benthic algae in artificial streams supplied with natural water and nominal treatments of (a) pH 4.8, (b) 500 µg l-1 Al, or (c) the mixture of pH 4.8 and 500 µg l-1 Al compared to a control without added Al or acid. These treatments are referred to as ‘Acid’, ‘Al-only’, ‘Acid + Al’, and the ‘control’, respectively. In the Acid treatment the abundance of two diatoms, two green algae, dry weight biomass, and chlorophyll a decreased; one diatom and one filamentous blue-green alga increased. In the Al-only treatment, densities of two diatoms, one green alga, one blue-green alga, dry weight biomass, and chlorophyll a increased. In the Acid + Al treatment, abundances of one green alga, two blue-green algae, and concentrations of chlorophyll a decreased below the levels observed in the Acid treatment. Acid and Al concentrations were altered by each other and by chemical and biological processes in the stream system. Species of diatoms, green algae, and blue-green algae responded individually to treatments and mixtures of acid and Al. Shifts in the abundance of species may change food web relationships for higher-level consumers, and algae may be useful biomonitors of ecological stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association, & Water Pollution Control Federation (APHA et al.), 1985. Standard methods for the examination of water and wastewater, 16th edn. Washington, D.C., 1268 pp.

  • Allard, M. & G. Moreau, 1985. Short-term effect on the metabolism of lotic benthic communities following experimental acidification. Can. J. Fish. aquat. Sci. 42: 1676–1680.

    Google Scholar 

  • Allen, R. F. H., 1977. Scale in microscopic algal ecology: a neglected dimension. Phycologia 16: 253–257.

    Google Scholar 

  • Anderson, R. F. & S. L. Schiff, 1987. Alkalinity generation and the fate of sulfur in lake sediments. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 188–193.

    Google Scholar 

  • Bartlett, R. J. & D. C. Riego, 1972a. Toxicity of hydroxy aluminum in relation to pH and phosphorous. Soil Science 114: 194–200.

    Google Scholar 

  • Bartlett, R. J. & D. C. Riego, 1972b. Effect of chelation on the toxicity of aluminum. Pl. Soil 37: 419–423.

    Google Scholar 

  • Bartlett, R. J., D. S. Ross & F. R. Magdoff, 1987. Simple kinetic fractionation of reactive aluminum in soil ‘solutions’. Soil Sci. Soc. am. J. 51: 1479–1482.

    Google Scholar 

  • Bruns, D. A., T. P. O'Rourke & G. B. Wiersma, 1990. Acid neutralization in laboratory sediment-water microcosms from a Rocky Mountain subalpine lake (USA). Envir. Toxicol. Chem. 9: 197–203.

    Google Scholar 

  • Burrows, W. D., 1977. Aquatic aluminum: chemistry, toxicology, and environmental prevalence. CRC Crit. Rev. Envir. Control 7: 167–216.

    Google Scholar 

  • Cairns, J., Jr, G. R. Lanza & B. C. Parker, 1972. Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc. Acad. nat. Sci. Philad. 124: 79–127.

    Google Scholar 

  • Campbell, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. aquat. Sci. 42: 2034–2049.

    Google Scholar 

  • Cook, R. B., C. A. Kelly, D. W. Schindler & M. A. Turner, 1986. Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnol. Oceanogr. 31: 134–148.

    Google Scholar 

  • Dickson, W., 1980. Properties of acidified waters. In D. Drablos & A. Tollan (eds), Proc. Int. Conf. Ecological Impact. Acid Precip. SNSF Project, Norway: 75–83.

    Google Scholar 

  • Dillon, P. J., N. D. Yan & H. H. Harvey, 1984. Acid deposition: effects on aquatic ecosystems. CRC Crit. Rev. Envir. Control 13: 167–194.

    Google Scholar 

  • Dixit, S. S., A. S. Dixit & J. P. Smol. 1991. Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.

    Google Scholar 

  • Driscoll, C. T. & W. D. Schecher, 1988. Aluminum in the environment. In H. Sigel & A. Sigel (eds), Aluminum and its role in biology. Metals in biological systems. Marcel Dekker, New York, 24: 59–122.

    Google Scholar 

  • Epstein, E., 1972. Mineral nutrition of plants: principles and perspectives. John Wiley & Sons, Inc. New York, 412 pp.

    Google Scholar 

  • Foy, C. D. & G. C. Gerloff, 1972. Response of Chlorella pyrenoidosa to aluminum and low pH. J. Phycol. 8: 268–271.

    Google Scholar 

  • Gadd, G. M., 1988. Accumulation of metals by microorganisms and algae. In H. J. Rehm (ed.), Biotechnology, Special microbial processes. V.C.H. Verlagsgesellschaft, Weinheim, 60: 401–434.

    Google Scholar 

  • Gensemer, R. W., 1991. The effects of pH and aluminum on the growth of the acidophilic diatom Asterionella ralfsii var. americana. Limnol. Oceanogr. 36: 123–131.

    Google Scholar 

  • Genter, R. B., D. S. Cherry, E. P. Smith & J. Cairns, Jr, 1987. Algal-periphyton population and community changes from zinc stress in stream micocosms. Hydrobiologia 153: 261–275.

    Google Scholar 

  • Genter, R. B., D. S. Cherry, E. P. Smith & J. Cairns, Jr, 1988. Attached-algal abundance altered by individual and combined treatments of zinc and pH. Envir. Toxicol. Chem. 7: 723–733.

    Google Scholar 

  • Haines, T. A., 1981. Acid precipitation and its consequences for aquatic ecosystems: a review. Trans. am. Fish. Soc. 110: 669–707.

    Google Scholar 

  • Hall, R. J., C. T. Driscoll, G. E. Likens & J. M. Pratt, 1985. Physical, chemical, and biological consequences of episodic aluminum additions to a stream. Limnol. Oceanogr. 30: 212–220.

    Google Scholar 

  • Hall, R. J., G. E. Likens, S. B. Fiance & G. R. Hendrey, 1980. Experimental acidification of a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61: 976–989.

    Google Scholar 

  • Havas, M. & J. F. Jaworski, 1986. Aluminum in the Canadian environment. Nat. Res. Council Canada Publications, NRCC/CNRC No. 24759, Ottawa, Canada.

  • Havens, K. E. & J. DeCosta, 1987. The role of aluminum contamination in determining phytoplankton and zooplankton responses to acidification. Wat. Air Soil Pollut. 33: 277–293.

    Google Scholar 

  • Havens, K. E. & R. T. Heath, 1990. Phytoplankton succession during acidification with and without increasing aluminum levels. Envir. Pollut. 68: 129–145.

    Google Scholar 

  • Hem, J. D., 1968. Graphical methods for studies of aqueous aluminum hydroxide, fluoride, and sulfate complexes. U.S. Geol. Surv. Wat. Supply Pap., No. 1827B, 37 pp.

  • Hsu, P. H. & T. F. Bates, 1964. Formation of X-ray amorphous and crystalline aluminum hydroxides. Mineral. Mag. 33: 749–768.

    Google Scholar 

  • Hunter, D. & D. S. Ross, 1991. Evidence for a phytotoxic hydroxyaluminum polymer in organic soil horizons. Science 251: 1056–1058.

    Google Scholar 

  • Johnson, N. M., C. T. Driscoll, J. S. Eaton, G. E. Likens & W. H. McDowell, 1981. ‘Acid rain’, dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Acta geochem. cosmochim. 45: 1421–1437.

    Google Scholar 

  • Kinraid, T. D. & D. R. Parker, 1987. Non-phytotoxicity of the aluminum sulfate ion AlSO +4 . Physiol. Pl. 71: 207–212.

    Google Scholar 

  • Kuwabara, J. S., 1985. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (Chlorophyta). Envir. Sci. Technol. 19: 417–421.

    Google Scholar 

  • Kuwabara, J. S., J. A. Davis & C. C. Y. Chang, 1986. Algal growth response to particle-bound orthophosphate and zinc. Limnol. Oceanogr. 31: 503–511.

    Google Scholar 

  • Lentner, M. & T. Bishop, 1986. Experimental design and analysis. Valley Book Co., Blacksburg, VA, 565 pp.

    Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. U.S.E.P.A. No. 670/4-74-005, Nat. Envir. Res. Center, Cincinnati, OH, 334 pp.

    Google Scholar 

  • Lüttge, U. & N. Higinbotham, 1979. Transport in plants. Springer-Verlag, New York, 468 pp.

    Google Scholar 

  • Martin, R. B., 1988. Bioinorganic chemistry of aluminum. In H. Sigel & A. Sigel (eds), Aluminum and its role in biology. Metals in biological systems, Marcel Dekker, New York, 24: 1–57.

    Google Scholar 

  • Moller, P., 1980. Effects of artificial acidification on the growth of periphyton. Can. J. Fish. aquat. Sci. 37: 355–363.

    Google Scholar 

  • Nalewajko, C. & M. A. Omahony, 1989. Photosynthesis of algal cultures and phytoplankton following an acid pH shock. J. Phycol. 25: 319–325.

    Google Scholar 

  • Nalewajko, C. & B. Paul, 1985. Effects of manipulations of AI concentrations and pH on phosphate uptake and photosynthesis of planktonic communities in two precambrian shield lakes. Can. J. Fish. aquat. Sci. 42: 1946–1953.

    Google Scholar 

  • Parker, D. R. & P. M. Bertsch, 1992. Formation of the ‘Al13’ tridecameric polycation under diverse synthesis conditions. Envir. Sci. Technol. 26: 914–921.

    Google Scholar 

  • Patrick, R., 1978. Effects of trace metals in the aquatic ecosystem. Am. Sci. 66: 185–191.

    Google Scholar 

  • Pettersson, A., L. Hallbom & B. Bergman, 1985. Physiological and structural responses of the cyanobacterium Anabaena cylindrica to aluminum. Physiol. Pl. 63: 153–158.

    Google Scholar 

  • Pillsbury, R. W. & J. C. Kingston, 1990. The pH-independent effect of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia 194: 225–233.

    Google Scholar 

  • Planas, D., L. Lapierre, G. Moreau & M. Allard, 1989. Structural organization and species composition of a lotic periphyton community in response to experimental acidification. Can. J. Fish. aquat. Sci. 46: 827–835.

    Google Scholar 

  • Rueter, J. G., Jr., K. T. O'Reilly & R. R. Petersen, 1987. Indirect aluminum toxicity to the green alga Scenedesmus through increased cupric ion activity. Envir. Sci. Technol. 21: 435–438.

    Google Scholar 

  • Rybak, M., I. Rybak & D. A. Scruton, 1989. The impact of atmospheric deposition on the aquatic ecosystem with special emphasis on lake productivity, Newfoundland, Canada. Hydrobiologia 179: 1–16.

    Google Scholar 

  • SAS, 1988. SAS/STAT User's Guide. Release 6.03 ed. [upgraded to 6.04] SAS Institute Inc., Cary, NC, 1028 pp.

    Google Scholar 

  • Schiff, S. L. & R. F. Anderson, 1987. Limnocorral studies of chemical and biological acid neutralization in two freshwater lakes. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 173–187.

    Google Scholar 

  • Schindler, D. W., R. Wagemann, R. B. Cook, T. Ruszczynski & J. Prokopowich, 1980a. Experimental acidification of Lake 223, Experimental Lakes Area: background data and the first three years of acidification. Can. J. Fish. aquat. Sci. 37: 342–354.

    Google Scholar 

  • Schindler, D. W., R. H. Hesslein, R. Wagemann & W. S. Broecker. 1980b. Effects of acidification on mobilization of heavy metals and radionuclides from the sediments of a freshwater lake. Can. J. Fish. aquat. Sci. 37: 373–377.

    Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Canadian J. Fish. aquat. Sci. 44 (Suppl. 1): 6–25.

    Google Scholar 

  • Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, 1989. Acidity status and phytoplankton species richness, standing crop, and community composition in Adirondack, New York, USA lakes. Hydrobiologia 175: 13–32.

    Google Scholar 

  • Soeder, C. & E. Stengel, 1974. Physico-chemical factors affecting metabolism and growth rate. In W. D. P. Stewart (ed.), Algal physiology and biochemistry. Botanical Monographs. Univ. Calif. Press, Berkeley, 10: 714–740.

    Google Scholar 

  • Starr, R. C. & J. A. Zeikus, 1987. UTEX — The culture collection of algae at the University of Texas at Austin. J. Phycol. 23 (Suppl.), 47 pp.

  • Stokes, P. M., 1984. pH related changes in attached algal communities of soft water lakes. In G. R. Hendrey (ed.), Early biotic responses to advancing lake acidification. Acid Precip. Ser. 6. Butterworth, Stoneham, MA: 43–61.

    Google Scholar 

  • Taylor, G. J., 1988a. The physiology of aluminum phytotoxicity. In H. Sigel & A. Sigel (eds), Aluminum and its role in biology. Metals in biological systems. Marcel Dekker, New York, 24: 123–163.

    Google Scholar 

  • Taylor, G. J., 1988b. The physiology of aluminum tolerance. In H. Sigel & A. Sigel (eds), Aluminum and its role in biology. Metals in biological systems, Marcel Dekker, New York, 24: 165–198.

    Google Scholar 

  • Turner M. A., M. B. Jackson, D. L. Findlay, R. W. Graham, E. R. DeBruyn & E. M. Vandermeer, 1987. Early responses of periphyton to experimental lake acidification. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 135–149.

    Google Scholar 

  • VanLandingham, S. L., 1982. Guide to the identification, environmental requirements and pollution tolerance of freshwater bluegreen algae (Cyanophyta). U.S.E.P.A. No. 600/3-82-073, Environmental Monitoring and Support Laboratory, Cincinnati, OH, 341 pp.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd edn. Saunders College Publishing, Philadelphia, PA, 767 pp.

    Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.

    Google Scholar 

  • Wiessner, W., 1962. Inorganic micronutrients. In R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York: 267–268.

    Google Scholar 

  • Wright, R. J., 1989. Soil aluminum toxicity and plant growth. Commun. soil Sci. pl. Anal. 20: 1479–1498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genter, R.B. Benthic algal populations respond to aluminum, acid, and aluminum-acid mixtures in artificial streams. Hydrobiologia 306, 7–19 (1995). https://doi.org/10.1007/BF00007854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007854

Key words

Navigation