Skip to main content
Log in

Cadmium, copper and lead in aquatic macrophytes in Shoal Lake (Manitoba-Ontario)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cadmium, copper and lead concentrations were surveyed in several species of submerged aquatic macrophytes in a Precambrian Shield Lake. Values were variable within each species and interspecific differences in metal concentration were not significant over the season as a whole. Cadmium concentration increased during the season in Potamogeton foliosus and Myriophyllum exalbescens, while copper and lead declined in P. foliosus. No identifiable seasonal trends were seen in P. zosteriformis and P. robbinsii. In P. foliosus, copper and lead concentrations increased with water depth. Few significant correlations were found between metal concentrations in the shoots and each of several water chemistry parameters, temperature, and shoot chlorophyll, soluble sugar and starch content. Roots yielded greater metal concentrations than shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F. S., D. R. MacKenzie, H. Cole Jr. & M. W. Price, 1971. The influence of nutrient pollution levels upon element constitution and morphology of Elodea canadensis Rich. in Michx. Envir. Pollut. 1: 285–298.

    Google Scholar 

  • Adams, F. S., H. Cole Jr. & L. B. Massie, 1973. Element constitution of selected aquatic vascular plants from Pennsylvania: submersed and floating leaved species and rooted emergent species. Envir. Pollut. 5: 117–147.

    Google Scholar 

  • Allenby, K. G., 1968. Some analyses of aquatic plants and waters. Hydrobiologia 32: 486–490.

    Google Scholar 

  • American Public Health Association, 1985. Standard Methods for the Examination of Water and Wastewater. Am. Publ. Health Assoc., Washington DC. 1268 pp.

    Google Scholar 

  • Aulio, K., 1980. Accumulation of copper in fluvial sediments and yellow water lilies (Nuphar lutea) at varying distances from a metal processing plant. Bull. envir. Contam. Toxicol. 25: 713–717.

    Google Scholar 

  • Behan, M. J., T. B. Kinraide & W. I. Selser, 1979. Lead accumulation in aquatic plants from metallic sources including shot. J. Wildl. Mgmt. 43: 240–244.

    Google Scholar 

  • Cearley, J. E. & R. L. Coleman, 1973. Cadmium toxicity and accumulation in Southern Naiad. Bull. envir. Contam. Toxicol. 9: 100–101.

    Google Scholar 

  • Cowgill, U. M., 1973. The determination of all detectable elements in the aquatic plants of Linsley Pond and Cedar Lake (North Branford, Connecticut) by X-ray emission and optical emission spectroscopy. Appl. Spectroscopy 27: 5–9.

    Google Scholar 

  • Cowgill, U. M., 1974. The hydrogeochemistry of Linsley Pond, North Branford, Connecticut. Arch. Hydrobiol. Suppl. 45: 1–119.

    Google Scholar 

  • Dietz, F., 1972. Enrichment of heavy metals in submerged plants. Adv. Wat. Pollut. Res., Proc. 6th Int. Conf. Wat. Pollut. Res. 6: 53–72.

    Google Scholar 

  • Gale, N. L., B. G. Wixson, M. G. Hardie & J. C. Jennett, 1973. Aquatic organisms and heavy metals in Missouri's New Lead Belt. Wat. Resour. Bull. 9: 673–688.

    Google Scholar 

  • Harding, J. P. C. & B. A. Whitton, 1978. Zinc, cadmium and lead in water, sediments and submerged plants of the Derwent Reservoir, northern England. Wat. Res. 12: 307–316.

    Article  Google Scholar 

  • Hutchinson, T. C., A. Fedorenko, J. Fitchko, A. Kuja, J. Van Loon & J. Lichwa, 1975. Movement and compartmentation of nickel and copper in an aquatic ecosystem. In Trace Substances in Environmental Health - IX, ed. D. D. Hemphill. Univ. Missouri, Columbia: 89–105.

    Google Scholar 

  • Kimball, K. D. & A. L. Baker, 1982. Variations in the mineral content of Myriophyllum heterophyllum Michx related to site and season. Aquat. Bot. 14: 139–149.

    Article  Google Scholar 

  • Leland, H. V. & J. M. McNurney, 1974. Lead transport in a river ecosystem. Proc. Int. Conf. Transport of Persistent Chemicals in Aquatic Ecosystems, Ottawa. Ill: 17–23.

  • Mathis, B. J. & N. R. Kevern, 1975. Distribution of mercury, cadmium, lead and thallium in a eutrophic lake. Hydrobiologia 46: 207–222.

    Google Scholar 

  • Mathis, B. J., T. F. Cummings, M. Gower, M. Taylor & C. King, 1979. Dynamics of manganese, cadmium and lead in experimental power plant ponds. Hydrobiologia 67: 197–206.

    Google Scholar 

  • Mayes, R. & A. McIntosh, 1975. The use of aquatic macrophytes as indicators of trace metal contamination in fresh water lakes. In trace Substances in Environmental Health - IX, D. D. Hemphill (ed.), Univ. Missouri, Columbia: 157–167.

    Google Scholar 

  • Mayes, R. A., A. W. McIntosh & V. L. Anderson, 1977. Uptake of cadmium and lead by a rooted aquatic macrophyte (Elodea canadensis). Ecology 58: 1176–1180.

    Google Scholar 

  • McIntosh, A. W., 1975. Fate of copper in ponds. Pesticide Monit. J. 8: 225–231.

    Google Scholar 

  • McIntosh, A. W., B. K. Shephard, R. A. Mayes, G. J. Atchison & D. W. Nelson, 1978. Some aspects of sediment distribution and macrophyte cycling of heavy metals in a contaminated lake. J. envir. Qual. 7: 301–305.

    Google Scholar 

  • Merchyulenene, D. P. & V. B. Nyanishkene, 1976. Accumulation of lead-210 by fresh water plants. Radiobiology 16: 200–204.

    PubMed  Google Scholar 

  • Newman, M. C. & A. W. McIntosh, 1982. The influence of lead in components of a freshwater ecosystem on molluscan tissue lead concentrations. Aquat. Toxicol. 2: 1–19.

    Article  Google Scholar 

  • Newman, M. C. & A. W. McIntosh, 1983. Slow accumulation of lead from contaminated food sources by the freshwater gastropods, Physa integra and Campeloma decisum. Arch. envir. Contam. Toxicol. 12: 685–692.

    Google Scholar 

  • Norusis, M.J., 1986. SPSS/PC+. SPSS Inc., Chicago, Illinois. 643 pp.

    Google Scholar 

  • Peter, R., H. Welsh & P. Denny, 1979. The translocation of lead and copper in two submerged aquatic angiosperm species. J. Exp. Bot. 30: 339–345.

    Google Scholar 

  • Petkova, L. M. & I. P. Lubyanov, 1969. Concentration of some microelements in macrophytes in the basins of the steppe zones of the Ukraine. Ukr. Bot. Zhur. 26: 90–96. In Ukrainian.

    Google Scholar 

  • Peverly, J. H., 1979. Elemental distribution and macrophyte growth downstream from an organic soil. Aquat. Bot. 7: 319–338.

    Article  Google Scholar 

  • Peverly, J. H., 1985. Element accumulation and release by macrophytes in a wetland stream. J. envir. Qual. 14: 137–143.

    Google Scholar 

  • Pip, E., 1987. Aquatic macrophytes in Shoal Lake (Manitoba-Ontario). II. Seasonal and local chlorophyll concentrations in relation to temperature and water chemistry. Arch. Hydrobiol. Suppl. 76: 223–235.

    Google Scholar 

  • Pip, E. & C. Sutherland-Guy, 1987. Aquatic macrophytes in Shoal Lake (Manitoba-Ontario). I. Diversity, biomass and metabolic status in relation to water depth and light intensity. Arch. Hydrobiol. Suppl. 76: 197–222.

    Google Scholar 

  • Piskunov, L. I. & V. M. Gushchyn, 1981. Uptake of radionuclides by freshwater plants under natural conditions. Radiobiol. (USSR) 21: 730–736. In Russian.

    Google Scholar 

  • Raghi-Atri, F., 1980. Untersuchungen an Glyceria maxima (Hartm.) Holmbg. unter Berucksichtigung von Cadmiumgaben im Bodensubstrat. Limnol. (Berl.) 12: 287–298.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman & Co., New York. 859 pp.

    Google Scholar 

  • Stanley, R. A., 1974. Toxicity of heavy metals and salts to Eurasian watermilfoil (Myriophyllum spicatum L.). Arch. envir. Contam. Toxicol. 2: 331–341.

    Google Scholar 

  • Sutherland-Guy, C. & E. Pip, 1989. Seasonal flux of nonstructural carbohydrate in 5 species of submerged macrophytes in a Precambrian Shield lake. I. Effect of light and water depth. Acta Hydrochim. Hydrobiol. 17: 387–399.

    Google Scholar 

  • Sutton, D. L. & R. D. Blackburn, 1971. Uptake of copper in Hydrilla. Weed Res. 11: 47–53.

    Google Scholar 

  • Welsh, P. & P. Denny, 1976. Waterplants and the recycling of heavy metals in an English lake. In: Trace Substances in Environmental Health — X, D. D. Hemphill(ed.), Univ. Missouri, Columbia: 217–223.

    Google Scholar 

  • Welsh, R. P. H. & P. Denny, 1980. The uptake of lead and copper by submerged aquatic macrophytes in two English lakes. J. Ecol. 68: 443–455.

    Google Scholar 

  • Willis, J. B., 1963. Analysis of biological materials by atomic absorption spectroscopy. Meth. Biochem. Anal. 11: 1–67.

    Google Scholar 

  • Winer, B. J., 1971. Statistical Principles in Experimental Design. McGraw-Hill Co., New York. 907 pp.

    Google Scholar 

  • Wong, P. T. S., B. A. Silverberg, Y. K. Chau & P. V. Hodson, 1978. Lead and the aquatic biota. In: The Biogeochemistry of Lead in the Environment, J. O. Nriagu (ed.), Elsevier Science Publ., Amsterdam: 279–342.

    Google Scholar 

  • Yan, N. D., G. E. Miller, I. Wile & G. G. Hitchin, 1985. Richness of aquatic macrophyte floaras of soft water lakes of differing pH and trace metal content in Ontario, Canada. Aquat. Bot. 23 27–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pip, E. Cadmium, copper and lead in aquatic macrophytes in Shoal Lake (Manitoba-Ontario). Hydrobiologia 208, 253–260 (1990). https://doi.org/10.1007/BF00007790

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007790

Keywords

Navigation