Skip to main content
Log in

Control of marine bacterioplankton populations: Measurement and significance of grazing

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A variety of methods have been used to estimate the degree of control exercised upon marine bacterioplankton by grazing organisms. These include filtration or dilution of samples to reduce grazers, the use of specific inhibitors to prevent growth or grazing, and the use of artificial particles or radio-labelled bacteria as tracers for the natural bacterioplankton. Each of these techniques has drawbacks which may lead to under- or overestimates of grazing. In addition, they tell us little about which organisms are doing the grazing or the degree to which viruses or lytic bacteria compete with grazers for bacterial production.

Because measurements of grazing and bacterioplankton growth rates are uncertain, exact comparisons are not presently possible. Thus measurements of bacterial and bacterivore abundance, concentrated on comparisons between seasons, on diel cycles and on spatial variations, have been used to evaluate mechanisms controlling bacterial populations. These give an idea of the degree of coupling between bacterial growth and bacterivore activity and of the time scales over which growth and grazing balance. Combined with laboratory studies of grazing, they currently provide the best insight into what controls populations of bacteria in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, P. & T. Fenchel, 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198–201.

    Google Scholar 

  • Andersen, P. & H. M. Sorensen, 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Mar. Ecol. Prog. Ser. 33: 99–109.

    Google Scholar 

  • Andersson, A., U. Larsson & Å. Hagström, 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33: 51–57.

    Google Scholar 

  • Andersson, A., C. Lee, F. Azam & Å. Hagström, 1985. Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23: 99–106.

    CAS  Google Scholar 

  • Andrews, P. & P. J. leB. Williams, 1971. Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in seawater. J. Mar. Biol. Assoc. U.K. 51: 111–125.

    CAS  Google Scholar 

  • Azam, F. & J. W. Ammerman, 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations. In M. J. R. Fasham (ed.), Flows of energy and materials in marine ecosystems. Plenum, NY: 345–360.

    Google Scholar 

  • Azam, F., T. Cowles, K. Banse, J. Osborne, P. J. Harrison & C. Kennedy, 1984. Free-living pelagic bacterioplankton: Sink or link in a marine food web. EOS (Trans. Am. Geophys. Union) 65: 926.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Azam, F. & R. E. Hodson, 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.

    CAS  Google Scholar 

  • Berk, S. G., R. R. Colwell & E. B. Small, 1976. A study of feeding responses to bacterial prey by estuarine ciliates. Trans. Am. Micros. Soc. 95: 414–520.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1986. Bacterial grazing by planktonic lake algae. Science 231: 493–495.

    Google Scholar 

  • Boak, A. C. & R. Goulder, 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar. Biol. 73: 139–149.

    Google Scholar 

  • Børsheim, K. Y., 1984. Clearance rates of bacteria-sized particles by freshwater ciliates, measured with monidisperse fluorescent latex beads. Oecologia 63: 286–288.

    Google Scholar 

  • Brown, R. M. Jr., 1972. Algal viruses. Adv. Vir. Res. 17: 243–278.

    Google Scholar 

  • Burney, C. M., P. G. Davis, K. M. Johnson & J. McN. Sieburth, 1981. Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton distributions in the western Sargasso Sea. Mar. Biol. 65: 289–296.

    CAS  Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Caron, D. A., J. C. Goldman, O. K. Andersen & M. R. Dennett, 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser. 24: 243–254.

    CAS  Google Scholar 

  • Cynar, S. J. & J. McN. Sieburth, 1986. Unambiguous detection and improved quantification of phagotrophy in apochlorotic nanoflagellates using fluorescent microspheres and concomittant phase contrast and epifluorescence microscopy. Mar. Ecol. Prog. Ser. 32: 61–70.

    Google Scholar 

  • Davis, P. G., D. A. Caron, P. W. Johnson & J. McN. Sieburth, 1985. Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions. Mar. Ecol. Prog. Ser. 21: 15–26.

    Google Scholar 

  • Davis, P. G. & J. McN. Sieburth, 1984. Estuarine and microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar. Ecol. Prog. Ser. 19: 237–246.

    Google Scholar 

  • DiSalvo, L. H., 1971. Regenerative functions and microbial ecology of coral reefs: ingestion of labelled bacteria in a coral reef microcosm. J. Exp. Mar. Biol. Ecol. 7: 123–136.

    Google Scholar 

  • Ducklow, H. W., 1983. Production and fate of bacteria in the oceans. Bioscience 33: 494–501.

    Google Scholar 

  • Ducklow, H. W. & S. M. Hill, 1985. The growth of heterotrophic bacteria in the surface waters of warm core rings. Limnol. Oceanogr. 30: 239–259.

    Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. leB. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    CAS  Google Scholar 

  • Fenchel, T., 1982a. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223.

    Google Scholar 

  • Fenchel, T., 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel, T., 1982c. Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar. Ecol. Prog. Ser. 9: 25–33.

    Google Scholar 

  • Fenchel, T., 1982d. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T., 1984. Suspended marine bacteria as a food source. In M. J. R. Fasham (ed.), Flows of energy and materials in marine ecosystems. Plenum, NY: 301–315.

    Google Scholar 

  • Fenchel, T. & P. Harrison, 1976. The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In J. M. Anderson & A. MacFayden (eds.), The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford: 285–299.

    Google Scholar 

  • Ferguson, R. L., E. N. Buckley & A. V. Palumbo, 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Envir. Microbiol. 47: 49–55.

    CAS  Google Scholar 

  • Ferguson, R. L. & P. Rublee, 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–145.

    Google Scholar 

  • Forsyth, D. J. & M. R. James, 1984. Zooplankton growing on lake bacterioplankton and phytoplankton. J. Plankton Res. 6: 803–810.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Envir. Microbiol. 39: 1085–1095.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterial production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Fuhrman, J. A. & T. M. Bell, 1985. Biological considerations in the measurement of dissolved free amino acids in seawater and implications for chemical and microbiological studies. Mar. Ecol. Prog. Ser. 25: 13–21.

    CAS  Google Scholar 

  • Fuhrman, J. A., R. W. Eppley, Å. Hagström & F. Azam, 1985. Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar. Ecol. Prog. Ser. 27: 9–20.

    Google Scholar 

  • Fuhrman, J. A. & G. B. McManus, 1984. Do bacteria-sized marine eukaryotes consume significant bacterial production? Science 224: 1257–1260.

    Google Scholar 

  • Gak, D. S., E. P. Romanova, V. I. Romanenko & Y. I. Sorokin, 1972. Estimation of changes in number of bacteria in isolated water samples. In Y. I. Sorokin & H. Kadota (eds.), Microbial production and decomposition in fresh waters. Blackwell, Oxford: 78–82.

    Google Scholar 

  • Gast, V., 1985. Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22: 107–120.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res 32: 899–915.

    Google Scholar 

  • Goldman, J. C. & M. R. Dennett, 1985. Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J. Exp. Mar. Biol. Ecol. 86: 47–58.

    Google Scholar 

  • Gray, J. S., J. G. Field, F. Azam, T. Fenchel, L.-A. Meyer-Reil & F. Thingstad, 1984. The role of free bacteria and bacterivory. In M. J. R. Fasham (ed.), Flows of energy in marine ecosystems. Plenum, New York: 707–723.

    Google Scholar 

  • Güde, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Google Scholar 

  • Guelin, A. & L. Cabioch, 1972. Bacteriolyse spontanee et pouvoir bactericide des eaux douces et marines; isolement d'un nouveau micropredateur. C. R. Acad. Sc. Paris 274: 3317–3319.

    Google Scholar 

  • Guerrero, R., C. Pedrós-Alió, I. Esteve, J. Mas, D. Chase & L. Margulis, 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Nat. Acad. Sci. U.S.A. 83: 2138–2142.

    CAS  Google Scholar 

  • Haas, L. W., 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Ann. Inst. Oceanogr. Paris 58(S): 261–266.

    Google Scholar 

  • Haas, L. W. & K. L. Webb, 1979. Nutritional mode of several non-pigmented microflagellates from the York River estuary, Virginia. J. Exp. Mar. Biol. Ecol. 39 125–134.

    Google Scholar 

  • Hagström, Å., U. Larsson, P. Horstedt & S. Normark, 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Envir. Microbiol. 37: 805–812.

    Google Scholar 

  • Hamilton, R. D. & J. E. Preslan, 1969. Cultural characteristics of a pelagic marine Hymenostome ciliate, Uronema sp. J. Exp. Mar. Biol. Ecol. 4: 90–99.

    Google Scholar 

  • Heinbokel, J. F., 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177–189.

    Google Scholar 

  • Hollibaugh, J. T., J. A. Fuhrman & F. Azam, 1980. Radioactive labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25: 172–181.

    CAS  Google Scholar 

  • Johnson, P. W. & J. McN. Sieburth, 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.

    Google Scholar 

  • King, K. R., J. T. Hollibaugh & F. Azam, 1980. Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Mar. Biol. 56: 49–57.

    Google Scholar 

  • Kopylov, A. I. & E. S. Moiseev, 1980. Effect of colorless flagellates on the determination of bacterial production in seawater. Dokl. Biol. Sci. 252: 272–274.

    Google Scholar 

  • Landry, M. R., L. W. Haas & V. L. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133.

    CAS  Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67: 283–288.

    Google Scholar 

  • Lessard, E. J. & E. Swift, 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar. Biol. 87: 289–296.

    Google Scholar 

  • Li, W. K. W. & P. M. Dickie, 1985. Growth of bacteria in seawater filtered through 0.2 μm Nuclepore membranes: implications for dilution experiments. Mar. Ecol. Prog. Ser. 26: 245–252.

    Google Scholar 

  • Lighthart, B., 1969. Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J. Fish. Res. Bd. Can. 26: 299–304.

    Google Scholar 

  • Linley, E. A. S., R. C. Newell & S. A. Bosma, 1981. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4: 31–41.

    Google Scholar 

  • Linley, E. A. S., R. C. Newell & M. I. Lucas, 1983. Quantitative relationships between phytoplankton, bacteria, and heterotrophic microflagellates in shelf waters. Mar. Ecol. Prog. Ser. 12: 77.

    Google Scholar 

  • Lohmann, H., 1908. Untersuchungen zur Feststellung des vollstandigen Gehalten des Meeres an Plankton. Wiss. Meeresuntes., N. F, Abt. Kiel. 10: 129–370.

    Google Scholar 

  • Luck, J. M., G. Sheets & J. D. Thomas, 1931. The role of bacteria in the nutrition of protozoa. Q. Rev. Biol. 6: 46–58.

    Google Scholar 

  • Maeda, M. & N. Taga, 1983. Comparisons of cell size of bacteria from four marine localities. La mer 21: 207–210.

    Google Scholar 

  • Mayer, J. A. & F. J. R. Taylor, 1979. A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281: 299–301.

    Google Scholar 

  • McManus, G. B. & J. A. Fuhrman, 1986. Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Google Scholar 

  • Moebus, K., 1980. A method for the detection of bacteriophages from ocean water. Helg. Meeres. 34: 1–14.

    Google Scholar 

  • Mullin, M. M., 1983. In situ measurement of filtering rates of the salp, Thalia democratica, on phytoplankton and bacteria. J. Plankton Res. 5: 279–288.

    Google Scholar 

  • Newell, R. C., 1984. The biological role of detritus in the marine environment. In M. J. R. Fasham (ed.), Flows of energy and materials in marine ecosystems. Plenum, New York: 317–343.

    Google Scholar 

  • Newell, R. C. & E. A. S. Linley, 1984. Significance of microheterotrophs in the decomposition of phytoplankton: estimates of carbon and nitrogen flow based on the biomass of plankton communities. Mar. Ecol. Prog. Ser. 161: 105–119.

    Google Scholar 

  • Newell, R. C., M. I. Lucas & E. A. S. Linley, 1981. Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms. Mar. Ecol. Prog. Ser. 6: 123–136.

    CAS  Google Scholar 

  • Newell, S. Y., B. F. Sherr, E. B. Sherr & R. D. Fallon, 1983. Bacterial response to the presence of eukaryotic inhibitors in water from a coastal marine environment. Mar. Env. Res. 10: 147–157.

    Google Scholar 

  • Oremland, R. S. & D. G. Capone, in press. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol.

  • Pace, M. L., J. E. Glasser & L. R. Pomeroy, 1984. A simulation analysis of continental shelf food webs. Mar. Biol. 82: 47–63.

    Google Scholar 

  • Pace, M. L., K. G. Porter & Y. S. Feig, 1983. Species- and age-specific differences in bacterial resource utilization by two co-occurring Cladocerans. Ecology 64: 1145–1156.

    Google Scholar 

  • Parke, M., I. Manton & B. Clarke, 1955. Studies on marine flagellates II. Three new species of Chrysochromulina. J. Mar. Biol. Assoc. U.K. 34: 579–609.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Google Scholar 

  • Porter, K. G., Y. S. Feig & E. F. Vetter, 1983. Morphology, flow regimes and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia 58: 156–163.

    Google Scholar 

  • Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Rivier, A., D. C. Brownlee, R. W. Sheldon & F. Rassoulzadegan, 1985. Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Marine Microbial Food Webs 1: 51–60.

    Google Scholar 

  • Romanova, A. P. & A. I. Zonov, 1964. On the estimation of production of bacterial biomass in the water body. Dokl. Akad. Nauk. SSSR. Biol. Sect. (Engl. Transl.) 155: 194–197.

    Google Scholar 

  • Schoenberg, S. A. & A. E. Maccubbin, 1985. Relative feeding rates on free and particle-bound bacteria by freshwater macrozooplankton. Limnol. Oceanogr. 30: 1084–1090.

    Google Scholar 

  • Servais, P., G. Billen & J. Vives-Rego, 1985. Rate of bacterial mortality in aquatic environments. Appl. Envir. Microbiol. 49: 1448–1454.

    CAS  Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1983. Enumeration of heterotrophic microprotozoa by epifluorescence microscopy. Estuarine, Coastal, and Shelf Science 16: 1–17.

    Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In M. J. Klug & C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.: 412–423.

    Google Scholar 

  • Sherr, B. F., R. D. Fallon & E. B. Sherr, 1987. Use of mono-dispersed fluorescently labelled bacteria to estimate in situ protozoan bacterivory. Appl. Envir. Microbiol. 53: 958–965.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1982. Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnol. Oceanogr. 27: 765–769.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Envir. Microbiol. 45: 1196–1201.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr, T. L. Andrew, R. D. Fallon & S. Y. Newell, 1986. Trophic interactions between protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Mar. Ecol. Prog. Ser. 32: 169–180.

    CAS  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr, R. D. Fallon & S. Y. Newell, 1986. Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.

    Google Scholar 

  • Shilo, M., 1984. Bdellovibrio as a predator. In M. J. Klug & C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC: 334–339.

    Google Scholar 

  • Sieburth, J. McN., 1979. Sea Microbes. Oxford Univ. Press, New York, 491 pp.

    Google Scholar 

  • Sieburth, J. McN., 1984. Protozoan bacterivory in pelagic marine waters. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic Activity in the Sea. NATO Conf. Ser. IV. Plenum, New York: 405–444.

    Google Scholar 

  • Sieburth, J. M., K. M. Johnson, C. M. Burney & D. M. Lavoie, 1977. Estimation of in situ rates of heterotrophy using diurnal changes in organic matter and growth rates of picoplankton in diffusion culture. Helg. Wiss. Meeresunters. 30: 565–574.

    CAS  Google Scholar 

  • Sieracki, M. E., L. W. Haas, D. A. Caron & E. J. Lessard, 1987. Effect of fixation on particle retention by microflagellates: underestimation of grazing rates. Mar. Ecol. Prog. Ser. 38: 251–258.

    Google Scholar 

  • Sorokin, Y. I., 1970. Aggregation of marine bacterioplankton. Doklody Akad. Nauk. SSSR (Biol. Sect.) (Engl. Transl. pp. 337–339) 192: 905–907.

    Google Scholar 

  • Sorokin, Y. I., 1971. On the role of bacteria in the productivity of tropical oceanic waters. Int. Revue Ges. Hydrobiol. 56: 1–48.

    CAS  Google Scholar 

  • Sorokin, Y. I., 1973. Trophical role of bacteria in the ecosystem of the coral reef. Nature 242: 415–417.

    Google Scholar 

  • Sorokin, Y. I., 1977. The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41: 107–117.

    Google Scholar 

  • Sorokin, Y. I., A. I. Kopylov & N. V. Mamaeva, 1985. Abundance and dynamics of microplankton in the central tropical Indian Ocean. Mar. Ecol. Prog. Ser. 24: 27–41.

    Google Scholar 

  • Taylor, G. T., R. Iturriaga & C. W. Sullivan, 1985. Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter. Mar. Ecol. Prog. Ser. 23: 129–141.

    Google Scholar 

  • Taylor, G. T. & M. L. Pace, 1987. Validity of eukaryote inhibitors for assessing production and grazing mortality of marine bacterioplankton. Appl. Envir. Microbiol. 53: 119–128.

    CAS  Google Scholar 

  • Torrella, F. & R. Y. Morita, 1979. Evidence by electron microscopy for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Envir. Microbiol. 37: 774–778.

    CAS  Google Scholar 

  • Van Es, F. B. & L.-A. Meyer-Reil, 1982. Biomass and metabolic activity of heterotrophic marine bacteria. Adv. Microb. Ecol. 6: 111–170.

    Google Scholar 

  • Varon, M. & M. Shilo, 1980. Ecology of aquatic Bdellovibrios. Adv. Aquat. Microbiol. 2: 1–48.

    CAS  Google Scholar 

  • Waksman, S. A. & C. L. Carey, 1935. Decomposition of organic matter in seawater by bacteria. II. Influence of addition of organic substances upon bacterial activities. J. Bacteriol. 29: 545–561.

    PubMed  CAS  Google Scholar 

  • Wiggins, B. A. & M. Alexander, 1985. Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. Envir. Microbiol. 49: 19–23.

    CAS  Google Scholar 

  • Wikner, J., A. Andersson, S. Normark & Å. Hagström, 1986. Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments. Appl. Envir. Microbiol. 52: 4–8.

    Google Scholar 

  • Williams, P. J. leB., 1981. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol. Acta. 4: 359–364.

    Google Scholar 

  • Williams, P. J. leB., 1984. Bacterial production in the marine food chain: the emperor's new suit of clothes? In M. J. Fasham (ed.), Flow of energy and materials in marine ecosystems: theory and practice. Plenum, New York: 271–300.

    Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1984a. Factors affecting bacterioplankton density and productivity in salt marsh estuaries. In M. J. Klug & C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC: 485–494.

    Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1984b. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microb. Ecol. 10: 137–149.

    Google Scholar 

  • Wright, R. T., R. B. Coffin, C. P. Ersing & C. P. Pearson, 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnol. Oceanogr. 27: 91–98.

    Google Scholar 

  • Yentsch, C. M. & C. S. Yentsch, 1984. Emergence of optical instrumentation for measuring biological properties. Oceanogr. Mar. Biol. Ann. Rev. 22: 55–98.

    CAS  Google Scholar 

  • ZoBell, C. E. & C. B. Feltham, 1937–38. Bacteria as food for certain marine invertebrates. J. Mar. Res. 1: 312–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, G.B., Fuhrman, J.A. Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia 159, 51–62 (1988). https://doi.org/10.1007/BF00007367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007367

Key words

Navigation