Skip to main content
Log in

Extracellular enzymes in a small polyhumic lake: origin, distribution and activities

  • Bacterial and Microbial Processes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seven extracellular enzymes were studied in a small polyhumic lake. Phosphatase, glucosidase and leucine-aminopeptidase were found to contribute strongest to the regeneration of nutrients and processing of polymeric organic substrates. Phosphatase activity varied between 10–800 nmol l−1 h−1 with highest activity in May–June. Glucosidase and leucine-aminopeptidase varied between 5–130 nmol l−1 h−1 with maxima in early and late summer. Phosphatase and leucine-aminopeptidase are stratified significantly in the water column. About 60% of leucine aminopeptidase could be attributed to bacterioplankton, whereas phosphatase were found to be 50–70% free dissolved in the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvola, L., 1986. Spring phytoplankton of 54 small lakes in Southern Finland. Hydrobiologia 137: 125–134.

    Google Scholar 

  • Arvola, L. & M. Rask, 1984. Relations between phytoplankton and environmental factors in a small, spring-meromictic lake in Southern Finland. Aqua Fennica 14: 129–138.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Billén, G., 1984. Heterotrophic utilization and regeneration of nitrogen. In J. E. Hobbie & P. J. leB Williams (eds), Heterotrophic activity in the sea. NATO SAD, Plenum Press, 1984: 313–355.

  • Chróst, R. J., 1990. Ectoenzymes in aquatic environments: origin, activity and ecological significance. In J. Overbeck & R. J. Chróst (eds). Advanced biochemical and molecular approaches to Aquatic Microbial Ecology, T. D. Brock Science Tech Publ., Springer Verlag Berlin, 1990: 47–78.

    Google Scholar 

  • Chróst, R. J. & H. J. Krambeck, 1986. Fluorescence correction for measurements of enzyme activity in natural waters usingmethylumbelliferyl-substrates. Arch. Hydrobiol. 106: 79–90.

    Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plußsee (North German eutrophic lake). Microb. Ecol. 13: 229–248.

    Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1989. Application of the isotope dilution principle to the determination of [14C]-glucose incorporation by aquatic bacteria. Acta Microbiol. Polon. 38: 75–89.

    Google Scholar 

  • Coffin, R. B., 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34: 531–542.

    Google Scholar 

  • De Haan, H., 1977. Effect of Benzoate on microbial decomposition of Fulvic Acids in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

    Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Adv. Microbial Ecol. 9: 57–97.

    Google Scholar 

  • Fuhrman, J. & F. Azam, 1980. Bacterioplanktton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. envir. Microbiol. 39: 1085–1095.

    Google Scholar 

  • Halemejko, G. Z. & R. J. Chróst, 1984. The role of phosphatase in phosphorus mineralization during decomposition of lake phytoplankton blooms. Arch. Hydrobiol. 101: 489–502.

    Google Scholar 

  • Hessen, D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microb. Ecol. 31: 215–223.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool size and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.

    Google Scholar 

  • Hollibaugh, J. T., & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.

    Google Scholar 

  • Hoppe, H.-G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Progr. Ser. 11: 299–308.

    Google Scholar 

  • Hoppe, H.-G., S. J. Kim & K. Gocke, 1988. Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Appl. envir. Microbiol. 54: 784–790.

    Google Scholar 

  • Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

    Google Scholar 

  • Jansson, M., H. Olsson & K. Pettersson, 1988. Phosphatases: origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.

    Google Scholar 

  • Johansson, J. Å., 1983. Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88.

    Google Scholar 

  • Jones, R. I., 1990. Phosphorus transformation in the epilimnion of humic lakes: biological uptake of phosphate. Freshwat. Biol. 23: 323–337.

    Google Scholar 

  • Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in Southern Finland. Verh. int. Ver. Limnol. 22: 811–816.

    Google Scholar 

  • Mann, K. H., 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930.

    Google Scholar 

  • Münster, U., 1991. Extracellular enzymes in eutrophic and polyhumic lakes. In R. J. Chróst (ed.), Enzymes in Aquatic Environments. T. D. Brock, Science Tech. Publ., Springer Verlag 1991, 96–122.

  • Münster, U. & R. J. Chróst, 1990. Dissolved organic matter (DOM) in aquatic environments: origin, distribution, composition and microbial utilization. In J. Overbeck & R. J. Chróst (eds), Advanced Biochemical and Molecular Approaches to Aquatic Microbial Ecology, T. D. Brock, Science Tech Publ., Springer Verlag 1990: 8–46.

  • Münster, U., P. Einiö & J. Nurminen, 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferyl-substrates. Arch. Hydrobiol. 115: 321–337.

    Google Scholar 

  • Münster, U., P. Einiö, J. Nurminen & J. Overbeck, 1992. Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. In K. Salonen, T. Kairesalo & R. I. Jones (eds), Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Developments in Hydrobiology 73. Kluwer Academic Publishers, Dordrecht: 225–238. Reprinted from Hydrobiologia 229.

    Google Scholar 

  • Olsson, H., 1983. Origin and production of phosphatases in the acid lake Gårdsjön. Hydrobiologia 101: 49–58.

    Google Scholar 

  • Overbeck, J., 1990. Aspects of aquatic microbial carbon metabolism: regulation of phosphoenolpyruvate carboxylase. In: J. Overbeck & R. J. Chróst (eds), Biochemical and Molecular Approaches to Aquatic Microbial Ecology, T. D. Brock, Science Tech Publ., Springer Verlag 1990: 79–95.

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 156: 7–18.

    Google Scholar 

  • Priest, F. G., 1984. Extracellular Enzymes, Aspects of Microbiology, Van Nostrand Reinhold (UK) Co. Ltd. pp. 79.

  • Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34: 1336–1343.

    Google Scholar 

  • Rich, P. H., 1984. Trophic-detrital interactions: vestiges of ecosystem evolution. Am. Nat. 123: 20–29.

    Google Scholar 

  • Rich, P. H. & R. G. Wetzel, 1978. Detritus in the lake ecosystem. Am. Nat. 112: 57–71.

    Google Scholar 

  • Riemann, B. & M. Søndergaard, 1984. Bacterial growth in relation to phytoplankton primary production and extracellular release of organic carbon. In J. E. Hobbie & P. J. leB Williams (eds) Heterotrophic activity of the sea, NATO SAD, Plenum Press, New York: 233–248.

    Google Scholar 

  • Riemann, B. & M. Søndergaard, 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plank. Res. 8: 519–536.

    Google Scholar 

  • Salonen, K., 1984. Progress Report: Pecularities in the limnology of small polyhumic lakes. Lammi Notes 11: 5–7.

    Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lakes waters. Oecologia 68: 246–253.

    Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small polyhumic lakes. Hydrobiologia 101: 65–70.

    Google Scholar 

  • Schütt, C., 1988. Plasmid-DNA in natural bacterial populations of four brownwater lakes (South Sweden). Arch. Hydrobiol. Beih. 31: 133–139.

    Google Scholar 

  • Schütt, C., 1990. Plasmids and their role in antural aquatic bacterial communities. In J. Overbeck & R. J. Chróst (eds), Biochemical and Molecular Approaches to Aquatic Microbial Ecology, T. D. Brock, Science Tech. Publ., Springer Verlag: 160–183.

  • Steinberg, C. & U. Münster, 1985. Geochemistry and ecological role of humic substances in lakewater. In G. R. Aiken, D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation, and Characterization. J. Wiley & Sons, New York: 105–145.

    Google Scholar 

  • Tranvik, L., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Google Scholar 

  • Tranvik, L., 1989. Bacterioplankton in humic lakes — a link between allochthonous organic matter and pelagic food webs. Ph.D. Thesis, University Lund, Department of Ecology/Limnology, Sweden, 1989.

    Google Scholar 

  • Tranvik, L., 1990. Bacterial growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. envir. Microbiol. 56: 1672–1677.

    Google Scholar 

  • Wetzel, R. G., 1979. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Ergebn. Limnol. 13: 145–161.

    Google Scholar 

  • Wetzel, R. G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verh. int. Ver. Limnol. 21: 369–381.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, Saunders, Philadelphia.

    Google Scholar 

  • Wetzel, R. G., 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. Mar. Sci. 35: 503–509.

    Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. In K. Salonen, T. Kairesalo & R. I. Jones (eds), Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Developments in Hydrobiology 73. Kluwer Academic Publishers, Dordrecht: 181–198. Reprinted from Hydrobiologia 229. 229.

    Google Scholar 

  • Wetzel, R. G., 1991. Extracellular enzymatic interactions in aquatic ecosystems: storage, redistribution, and interspecific communication. In R. J. Chróst (ed.), Enzymes in Aquatic Environments, T. D. Brock Science Tech. Publ., Springer Verlag: 6–28.

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses, W. B. Saunders Company, Philadelphia, 151–156.

    Google Scholar 

  • Wetzel, R. G., P. H. Rich, M. C. Miller & H. L. Allen, 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Ist. Ital. Idrobiol. Suppl. 29: 185–243.

    Google Scholar 

  • Wood, T. M., 1985. Properties of the cellulolytic enzyme systems. Biochem. Soc. Trans. 13: 407–410.

    Google Scholar 

  • Wood, T. M. & S. I. McCrea, 1979. Synergism between enzymes involved in the solubilization of native cellulose. Advances in Chemistry Series 181: 181–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münster, U., Nurminen, J., Einiö, P. et al. Extracellular enzymes in a small polyhumic lake: origin, distribution and activities. Hydrobiologia 243, 47–59 (1992). https://doi.org/10.1007/BF00007019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007019

Key words

Navigation