Skip to main content
Log in

Plankton community respiration: relationships with size distribution and lake trophy

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Allometric interpretations of community size structure often assume that laboratory relations between physiological rates and body size apply in the field, but this assumption is rarely examined critically. We therefore tested the hypothesis that limnoplankton community respiration rates are predictable functions of mean body size, and compared these functions to laboratory relations. Over a broad range of trophic conditions (6.5 ≤ [TP] ≤ 130 μg I−1; 1.2≤ [chl-a] ≤ 29 μg 1−1 ), the mean respiration rate per organism for picoplankton, nannoplankton, and net plankton assemblages was a power function of mean organism size, with an exponent of 0.73. When respiration (R) and biovolume (B) are standardized to equivalent carbon units, the R/B ratio was a power function of mean organism size, with an exponent of −0.30. These results provide empirical support for the contention that size distributions may be used to construct comprehensive models of community physiology. The total epilimnetic phosphorus concentration was correlated with both the biovolume and respiration rate of the plankton community, as well as with the respiration rates of the three plankton size classes; so these aspects of community function may also be predictable functions of lake trophic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, M., 1989. The Size Distribution of the Limnoplankton. Ph.D. Thesis, McGill University. 186 pp.

  • American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1971. Standard methods for the examination of water and wastewater. 13th edn. Washington, DC. 1193 p.

  • Banse, K., 1976. Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size — a review. J. Phycol. 12: 135–140.

    Google Scholar 

  • Banse, K., 1979. On weight dependence of net growth efficiency and specific respiration rates among field populations of invertebrates. Oecologia (Berl.) 38: 111–126.

    Google Scholar 

  • Banse, K. & S. Mosher, 1980. Adult body mass and annual production/biomass relationships of field populations. Ecol. Monogr. 50: 355–379.

    Google Scholar 

  • Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters & S. Sams, 1978. Relationships between body size and some life history parameters. Oecologia (Berl.) 37: 257–272.

    Google Scholar 

  • Calder, W. A., III. 1984. Function, and Life History. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Canfield, D. E., 1983. Prediction of chlorophyll-a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Wat. Res. Bull. 19: 255–262.

    Google Scholar 

  • Cornett, R. J. & F. H. Rigler, 1986. Simple method of measuring seston respiration in oligotrophic lakes. Can. J. Fish. aquat. Sci. 43: 1660–1663.

    Google Scholar 

  • Devol, A. H., 1975. Biological oxidations in oxic and anoxic marine environments: rates and processes. PhD thesis, Univ. Washington, Seattle, Wash. 208 p.

    Google Scholar 

  • Devol, A. H., 1979. Zooplankton respiration and its relation to plankton dynamics in two lakes of contrasting trophic state. Limnol. Oceanogr. 24: 893–905.

    Google Scholar 

  • Devol, A. H. & T. T. Packard, 1978. Productivity, chlorophyll, and respiration in Lake Washington. Limnol. Oceanogr. 23: 104–111.

    Google Scholar 

  • Dickie, L. M., S. R. Kerr & P. R. Boudreau, 1987. Size-dependent processes underlying regularities in ecosystem structure. Ecol. Monogr. 57: 233–250.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Elser, J. J., M. M. Elser & S. R. Carpenter, 1986. Size fractionation of algal chlorophyll, carbon fixation, and phosphatase activity: relationships with species-specific size distributions and zooplankton community structure. J. Plankton Res. 8: 365–383.

    Google Scholar 

  • Fenchel, T., 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326.

    Google Scholar 

  • Gelin, C. & W. Ripl, 1978. Nutrient decrease and response of various phytoplankton size fractions following the restoration of Lake Trummen, Sweden. Arch. Hydrobiol. 81: 339–367.

    Google Scholar 

  • Gessner, F. & F. Pannier, 1958. Influence of oxygen tension on respiration of phytoplankton. Limnol. Oceanogr. 3: 478–480.

    Google Scholar 

  • Griesbach, S., R. H. Peters & S. Youakim, 1982. An allometric model for pesticide bioaccumulation. Can. J. Fish. aquat. Sci. 39: 727–735.

    Google Scholar 

  • Hemmingsen, A. M., 1960. Energy metabolism as related to body size and respiratory area, and its evolution. Rep. Steno. Hosp. Copenh. 9: 1–110.

    Google Scholar 

  • Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1–11.

    Google Scholar 

  • Ivleva, I. V., 1980. The dependence of crustacean respiration rate on body mass and habitat temperature. Int. Revue ges. Hydrobiol. 65: 1–47.

    Google Scholar 

  • Jorgensen, S. E., 1979. Modelling the distribution and effect of heavy metals in aquatic ecosystems. J. Ecol. Model. 6: 199–223.

    Google Scholar 

  • Kalff, J. & R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 475–495.

  • Klekowski, R. Z., 1981. Size dependence of metabolism in protozoans. Verh. int. Ver. Theor. Angewan. Limnol. 21: 1498–1502.

    Google Scholar 

  • Knoechel, R. & L. B. Holtby, 1986. Construction and validation of a body-length-based model for the prediction of cladoceran community filtering rates. Limnol. Oceanogr. 31: 1–16.

    Google Scholar 

  • Lampert, W., 1984. The measurement of respiration. In J. A. Downing & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Hdbk. 17, Blackwell.

    Google Scholar 

  • Lavigne, D. M., 1982. Similarity in energy budgets of animal populations. J. Anim. Ecol. 51: 195–206.

    Google Scholar 

  • Lund, J. W., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal cell numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnol. Oceanogr. 34: 856–867.

    Google Scholar 

  • Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Mullin, M. M., P. R. Sloan & R. W. Eppley, 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307–311.

    Google Scholar 

  • Neely, W. B., 1979. Estimating rate constants for the uptake and clearance of chemicals by fish. Envir. Sci. Technol. 13: 1506–1510.

    Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45–55.

    Google Scholar 

  • Packard, T. T., 1971. The measurement of respiratory electron transport activity in marine phytoplankton. J. mar. Res. 29: 235–244.

    Google Scholar 

  • Packard, T. T., 1985. Measurement of electron transport activity of microplankton. Adv. aquat. Microbiol. 3: 207–261.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press.

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, 329 p.

  • Peters, R. H., 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.

    Google Scholar 

  • Peters, R. H., 1988. The relevance of allometric comparisons to growth, reproduction, and nutrition in primates and man. p. 1–19 in K. Blaxter and I. Macdonald (eds), Comparative Nutrition. John Libbey, London.

    Google Scholar 

  • Platt, T. & W. Silvert, 1981. Ecology, physiology, allometry, and dimensionality. J. Theor. Biol. 93: 855–860.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34: 1336–1343.

    Google Scholar 

  • Robinson, W. R., R. H. Peters & J. Zimmerman, 1983. The effects of body size and temperature on metabolic rate of organisms. Can. J. Zool. 61: 281–288.

    Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. Shuter, 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Can. J. Fish. aquat. Sci. 38: 1052–1058.

    Google Scholar 

  • Schwinghamer, P., B. Hargrave, D. Peer & C. M. Hawkins, 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Mar. Ecol.-Progr. Ser. 31: 131–142.

    Google Scholar 

  • Simon, M., 1987. Biomass and production of small and large free-living and attached bacteria in Lake Constance. Limnol. Oceanogr. 32: 591–607.

    Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Google Scholar 

  • Sondergaard, M., B. Riemann, L. Moller Jensen, N. O. G. Jørgensen, P. K. Bjørnsen, M. Olesen, J. B. Larsen, O. Geertz-Hensen, J. Hansen, K. Christoffersen, A.-M. Jespersen, F. Andersen & S. Bosselmann, 1988. Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271–286.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A Practical Handbook of Seawater Analysis. 2nd edn. Bull. Fish. Res. Bd Can. 167.

  • Welch, H. E., 1968. Use of modified diurnal curves for the measurement of metabolism in standing water. Limnol. Oceanogr. 13: 679–687.

    Google Scholar 

  • Williams, P. J. L., 1984. A review of measurements of respiration rates of marine plankton populations, p. 357–389. In J. E. Hobbie & P. J. L. Williams (eds), Heterotrophic Activity in the Sea. Plenum.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrens, M.A., Peters, R.H. Plankton community respiration: relationships with size distribution and lake trophy. Hydrobiologia 224, 77–87 (1991). https://doi.org/10.1007/BF00006864

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006864

Key words

Navigation