Skip to main content
Log in

Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Lagune Ebrié, Cote d'Ivoire). Relations trophiques

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During the period of September–November 1981, a stratified condition was observed in Biétri Bay, a part of Ebrié Lagoon (Ivory Coast, Africa). The epilimnion was oxidised and in the hypolimnion, high concentrations of hydrogen sulfide were noted (200–400 mg · l−1).

At the surface of the hypolimnion, a large population of phototrophic bacteria developed, constituting a brown layer composed of the purple and green bacteria Rhodopseudomonas sp., Chromatium gracile, Chlorobium vibrioforme, C. phaeobacteroides and Pelodictyon sp. These bacteria can be considered as particulate organic matter producers. Their production is estimated at about 1 530 mg C · m−2 · day−1. In the epilimnion, the algal production is 2 200 mg C · m−2 · day−1. Therefore, phototrophic bacterial production represented 41% of the total photosynthetic production. In the epilimnion, the zooplankton community (composed of copepods, rotifers and some cyclopids) was particularly concentrated near the chemocline where only low concentration of dissolved oxygen was available.

Analysis of gut contents of the copepod Acartia clausi, which is the dominant species of the zooplankton, shows the importance of phototrophic bacteria and especially Rhodospirillaceae and Chromatium in its diet. This copepod seems to prefer phototrophic bacteria to both heterotrophic bacteria and phytoplancton. The vertical migration of the zooplankton community is partly conditioned by the search for nutrients i.e. phototrophic bacteria. Thus, bacteria contribute to the first trophic level of the food chain in this lagoon. Since they derive part of their energy from organic matter formed by primary producers, they cannot be considered as pure primary producers. However, in respect to the food chain they form food material for secondary producers (zooplankton).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arfi, R., Dufour, P. & Maurer, D., 1981. Phytoplancton et pollution: premières études en baie de Biéri (Côte d'Ivoire). Traitement mathématique des données. Oceanol. Acta 4: 319–329.

    Google Scholar 

  • Biebl, H. & Pfennig, N., 1979. CO2 fixation by anaerobic phototrophic bacteria in lakes, a review. Arch. Hydrobiol. 12: 48–58.

    Google Scholar 

  • Bohrer, R., 1980. Experimental studies on diel vertical migration. In: Kerfoot, W. (ed.). Evolution and Ecology of Zooplankton Communities, Univ. press, Lond.: 65–68.

    Google Scholar 

  • Charles-Dominique, E. & Durand, J. R., 1979. Les lagunes de Cote d'Ivoire. Bibliographie provisoire. Arch. Sci. C.R.O. Abidjan 5: 1–24.

    Google Scholar 

  • Culver, D. A. & Brunskill, G. J., 1969. Fayetteville green Lake, New York. 5. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14: 862–873.

    Article  CAS  Google Scholar 

  • Dumont, H. J., Van de Velde, I. & Dumont, S., 1975. The dry weight estimates of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Gerber, R. P. & Marshall, N., 1975. Ingestion of detritus by the lagoon pelagic community at Eniwetok Atool. Limnol. Oceanogr. 19: 815–824.

    Article  Google Scholar 

  • Gophen, M., Cavari, Z. B. & Berman, T., 1974. Zooplankton feeding on differentially labelled algae and bacteria. Nature 247: 393–394.

    Article  Google Scholar 

  • Gorlenko, V. M., Chebotarev, E. N. & Kachalkin, V. I., 1974. Microbial oxidation of hydrogen sulfide in lake Veisovo (Slavyank lakes). Microbiology 43: 450–453.

    Google Scholar 

  • Gorlenko, V. M., Vainstein, M. B. & Kachalkin, V. I., 1978. Microbiological characteristic of lake Mogilnoye. Arch. Hydrobiol. 81: 475–492.

    CAS  Google Scholar 

  • Guerrero, R., Abella, C. & Miracle, M., 1978. Spatial and temporal distribution of bacteria in a meromictic karstic lake basin: relationships with physico-chemical parameters and zooplankton. Verh. int. Verh. Limnol. 20: 2264–2271.

    Google Scholar 

  • Heinle, D. R., Harris, R. P. & Flemer, D. A., 1977. Detritus as food for estuarine copepods. Mar. Biol. 40: 241–353.

    Article  Google Scholar 

  • Holm-Hansen, O., Lorenzen, C., Holmes, R. & Strickland, J., 1965. Fluorimetric determination of chlorophyll. J. Cons. perm. int. explor. mer. 30: 3–15.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., Kuenen, J. G. & Cohen, Y., 1979. Microbial transformation of sulfur compounds in a stratified lake (Solar lake, Sinai). Limnol. Oceanogr. 24: 799–822.

    Article  Google Scholar 

  • Landry, M. R., 1978. Population dynamics and production of a planktonic marine copepod, Acartia clausi, in a small temperate lagoon on San Juan island, Washington. Int. Revue ges. Hydrobiol. 63: 77–119.

    Article  Google Scholar 

  • Lawrence, J. C., Haynes, R. C. & Hammer, U. T., 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Ver. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Mackas, D. L. & Bohrer, N. R., 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J. exp. mar. Biol. Ecol. 25: 77–85.

    Article  Google Scholar 

  • Matsuyama, M. & Shirouzu, E., 1978. Importance of photosynthetic bacteria, Chromatium sp., as an organic matter producer in lake Kaiike. Jap. J. Limnol. 39: 103–111.

    Article  Google Scholar 

  • Pagano, M. & Saint-Jean, L., 1983. Croissance en poids d'Acartia clausi en lagune Ebrié (Côte d'Ivoire). Rev. Hydrobiol. trop. 16(2).

  • Parkin, T. B. & Brock, T. D., 1980. Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Article  Google Scholar 

  • Pfennig, N., 1978. General physiology and ecology of photosynthetic bacteria. In: Clayton, R. & Sistrom, W. (eds.). The Photosynthetic Bacteria. Plenum Press Corporation. N.Y.: 3–18.

    Google Scholar 

  • Pfennig, N. & Trüper, H. G., 1981. Isolation of members of the Families Chromatiaceae and Chlorobiaceae. In: Starr, M., Stolp, H., Trüper, H. G., Balows, A. & Schlegel, H. (eds.). The Procaryotes. Springer-Verlag, N.Y.: 279–289.

    Chapter  Google Scholar 

  • Postgate, J. R., 1966. Media for sulfur bacteria. Lab. Pract. 15: 12–39.

    Google Scholar 

  • Romanenko, V. I., Peires-Eiris, M., Kudryavtsev, V. M. & Pubiene, A., 1976. Microbiological processes in meromictic lake Vae de San Juan, Cuba. Microbiology 45: 466–472.

    Google Scholar 

  • Sorokin, Y. I., 1969. On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies. In: Goldman, C. R. (ed.). Primary Productivity in Aquatic Environments. Univ. California press: 199–205.

  • Sorokin, Y. I., 1970. Interrelations between sulfur and carbon turnover in meromictic lakes. Arch. Hydrobiol. 66: 391–446.

    Google Scholar 

  • Sorokin, Y. I. & Kadota, H., 1972. Techniques for the assessment of microbial production and decomposition in fresh waters. IBP Handbook 23, Blackwell Scientific Publications, Lond.

    Google Scholar 

  • Strickland, J. D. & Parsons, T. R., 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167, 370 pp.

  • Takahashi, M. & Ishimura, S., 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.

    Article  Google Scholar 

  • Trousselier, M. & Baleux, B., 1981. Approche méthodologique pour l'analyse des peuplements bactériens hétérotrophes des étangs littoraux. Acta oecol. 2: 63–74.

    Google Scholar 

  • Trüper, H. G. & Genovese, S., 1968. Characterization of phototrophic bacteria causing red water in lake Faro (Sicily). Limnol. Oceanogr. 13: 225–232.

    Article  Google Scholar 

  • Trüper, H. G. & Pfennig, N., 1978. Taxonomy of Rhodospirillales. In: Clayton, R. & Sistrom, W. (eds.). The Photosynthetic Bacteria. Plenum Publishing Corp., N.Y.: 19–27.

    Google Scholar 

  • Ustach, J. F., 1982. Algae, bacteria and detritus as food for the harpacticoid copepod Heteropsyllus pseudonunni. J. Exp. Mar. biol. Ecol. 64: 203–214.

    Article  Google Scholar 

  • Widdel, F. & Pfennig, N., 1981. Studies on dissimilatory sulfate reducing bacteria that decompose fatty acids. 1: Isolation of new sulfate reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caumette, P., Pagano, M. & Saint-Jean, L. Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Lagune Ebrié, Cote d'Ivoire). Relations trophiques. Hydrobiologia 106, 135–148 (1983). https://doi.org/10.1007/BF00006746

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006746

Keywords

Navigation